Part IV

Applications

It is through science that we prove, but
through intuition that we discover.

Jules Henri Poincaré






Chapter 7

Dynamic recommender

ensembles

Hybrid recommender systems — and recommender ensembles as a particular case —
have become a very popular strategy for making recommendations, since they help
alleviate most of the shortcomings of the individual recommenders combined. They
have, however, specific problems such as the need of deciding which information
sources should be exploited, which recommenders should exploit each of these
sources, and how the combination of recommenders should be configured.

In this chapter we propose a framework to decide how dynamic hybridisation
should be balanced, by estimating its expected improvements on individual recom-
mendations. Furthermore, we provide some requirements to decide when to build
such hybridisation. Within the spectrum of hybrid recommendation approaches, we
focus on those that linearly combine the output from several recommenders, and use
different weights for generating a particular aggregation of the individual recommen-
dations. In the standard approach, these weights are typically fixed regardless of the
user for which recommendations are produced, or the recommended items. In this
context we investigate the use of performance predictors to assign those weights
dynamically depending on the target user or item. We evaluate our approach using
the predictors proposed in the previous chapter. The results obtained show that the
generated dynamic ensembles are capable of outperforming their static counterparts.
Furthermore, they also show that dynamic ensembles can be improved if predictors
with stronger predictive power (higher correlation values as observed in the previous
chapter) are used.

In Section 7.1 we present and formulate the research problem of recommenda-
tion hybridisation. Next, in Section 7.2 we describe our proposed performance pre-
diction framework for dynamic hybrid recommendation. Section 7.3 describes the
experiments conducted and provide an overall discussion of the obtained results.

Finally, in Section 7.4 some conclusions are given.



142 Chapter 7. Dynamic recommender ensembles

7.1 Problem statement

As described in Chapter 2, hybrid recommenders are built by the combination of
different recommendation methods. In the simplest and typical case, hybrid recom-
mendations are produced by weighting and summing the utility values output by
some recommenders, forming a so called recommender ensemble where an arbitrary
number of algorithms of different kinds (content-based, user-based collaborative
filtering, item-based collaborative filtering, social-based, demographics-based, etc.)
can be combined.

Researchers in Machine Learning have known for long that the combination of
classifiers usually achieves better results than each method separately, which is also
true in Recommender Systems — the Netflix prize has been a paradigmatic example
of this, where all the top classified teams used large recommender ensembles. We
focus on weighted hybrid approaches, as an option that begets a simple and general
formulation of the dynamic balance of the combined methods Ry by just setting the
weights A, of each method in the hybrid combination. This approach can be ex-

pressed as follows:
rat(u,i) = Z A * ratg, (u, i) s.t. Z/lk =1 (7.1)
K K

In this chapter we investigate whether the performance predictors proposed in
the previous chapter — where we have already found degrees of correlation between
the ambiguity (clarity) of the user’s preferences and the accuracy of the system’s rec-
ommendations — can be useful for hybridisation. Specifically, we aim to use these
predictors to build dynamic hybrid recommenders in such a way that the weight
Ar depends not only on the recommender but also on the current user U, or poten-
tially other variables such as the item i or other available context information. We
propose to specify such weights according to the ambiguity of the user’s preferences
or item’s patterns, that is, we aim to use the performance predictors defined in the
Chapter 6 to estimate those weights.

In the next section we propose a framework to perform dynamic hybrid recom-
mendation where we use recommendation performance predictors and we analyse
different requirements related to the adaptation of such predictors to produce
weights in a hybrid recommender combination. After that, three different experi-
ments are presented, where the predictors proposed in Chapter 6 are used as dy-

namic weights in the combination.
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7.2 A performance prediction framework for

ensemble recommendation

Let us simplify Equation (7.1) to the case where only two recommenders R1 and R2
are used. In this situation, only one weighting factor 4 is needed (because of the con-

straint for the weights to sum to one) and we would have the following formulation:

rat(u,i) = 1 ratg,(u, i) + (1 — 1) * ratg,(u, i) (7.2)

In this case, since the 4 weight is the same for every user u and item I we refer
to such a recommender as a szatic hybrid. However, a single value of the combination
parameter A is not generally the optimal for each (uset, item) pair. Therefore, instead

of Equation (7.2), we may want to consider:

rat(u,i) = yri (U, i) * ratgy (W, i) + yro (u, i) * ratg, (u, i) (7.3)

where Y is the combination parameter which may depend on the current user, item,
or both, and probably also depending on the recommender R. In this case we refer
to such method as a dynanzic hybrid.

A suitable assignment of the y(u,i) parameters is a difficult task. In our ap-
proach, however, we propose to use the performance prediction methodology devel-
oped in the previous chapter, whenever the predictors show some correlation with
the performance of a recommender. In this way, since we have some evidence that
the performance predictors are able to estimate in advance the performance of a user
in a user or item basis, we can use such estimations to weight accordingly the ratings
predicted for a given user and item pair by each recommender.

In this context, it is not granted in general to obtain improvements whenever a
performance predictor is used in a dynamic ensemble. We have to devise a set of
conditions in which such predictors may be used; moreover, the ensemble problem
has to be well defined, which is not always true as we shall show. Hence, we define a
framework for dynamic hybrid recommendation based on recommendation per-
formance predictors, characterised by some prerequisites, a specific normalisation
strategy, and a weighting distribution among recommenders. In this framework, the
weights yp are obtained by transformations of the values obtained by a performance
predictor, in a similar way as the work presented in (Yom-Tov et al., 2005b) on rank

aggregation in Information Retrieval, but in the context of Recommender Systems.

7.2.1 Requirements

A first requirement to use a performance predictor for weighting the recommenders

of an ensemble, is that it should correlate positively with the performance of not all
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but some of such recommenders, or with the performance of all the recommenders
but to different degrees. If a performance predictor correlates positively with all the
recommenders in an ensemble to a similar extent, it does not provide a discriminative
criteria to weight the recommenders any differently.

A predictor should be used to assign weights to those recommenders of the en-
semble with which it correlates for performance. These assignments also alter the
weights of the uncorrelated recommenders, since the weights of all the recommend-
ers in the ensemble need to sum to 1. However, this should not affect the overall
performance contribution of these recommenders, as the resulting weight should
correspond randomly with their performance (hence the unpredicted recommenders’
weight can be expected to change for good as much as for bad, whereas the weight
of predicted recommenders should change more often for good).

Figure 7.1 shows which correlations can be considered valid according to the
statements presented above, for an ensemble with two recommenders R1 and R2.
The horizontal axis depicts the correlation with respect R1 and the vertical axis with
R2. Hence, the dotted area represents those situations where a predictor’s correlation
for R1 is higher than for R2, and thus, the predictor should weight R1. Analogously,
the striped area represents the candidate situations where the predictor should weight
R2. Furthermore, when correlations with R1 and R2 are too similar (diagonal) no
weighting assignment is preferred, and thus, if a predictor lies in the white area it
should be used for weighting neither R1 nor R2 for the reasons described above.

Another requirement is that a recommender should not have an always superior
or always inferior performance to those of the rest of the ensemble’s recommenders.
Otherwise the problem is distorted by the fact that the best weight is the one that
gets closest to 0 for the recommenders that systematically perform worse (or 1 for
the best), regardless of how excellent or terribly bad is the applied strategy, or the
predictive power of the approach, since a biased predictor (either towards 0 or 1,
depending on which recommender (the worst or the best) such predictor is weight-
ing) would obtain very good results. This issue is recognised in (van Setten, 2005)
where the author presents the situation where all recommenders produce item sug-
gestions that are all too low or all too high with respect to the true user’s preferences,
and then the recommender ensemble is less accurate than the best individual recom-
mender. In summary, underperforming recommenders are useless in an ensemble to
begin with, or equivalently, the over performing one(s) should be used alone, and

thus, there is no true weighting problem to solve.
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Figure 7.1. Valid predictor correlation regions for a recommender ensemble of size 2.

7.2.2 Predictor normalisation

The output of a predictor is required to correlate with the performance of a recom-
mender, but it is not necessarily by itself a good value for weighting the recom-
mender in an ensemble, as already pointed out in (Hauff et al., 2009). In order to
generate appropriate weights, the predictor output should be transformed by a
monotonic function into values on a comparable scale, such as simply [0,1]. We shall
call this transformation “normalisation.”

In this context, different transformations can be applied. Mapping the minimum
value to 0 and the maximum to 1 is the simplest transformation, also known as mzn-
max score normalisation (Renda and Straccia, 2003). Another common approach is
to map (named rank-sim by Renda and Straccia, 2003) the predictor scores onto
evenly distributed points in the [0,1], preserving their order. Min-max preserves the
original predictor score distribution, while rank-sim maps it onto a uniform distribu-
tion. There is no obvious a priori reason to decide which case is preferable, to pre-
serve the original distribution, or to equalise it somehow, and in fact more complex

normalisation techniques could be used, like the one proposed in (Fernandez et al.,

2006b).

7.2.3 Weight distribution among recommenders

Once the predictor output has been normalised, it still needs a final adjustment to

ensure, among other things, that the sum of the weights assigned to the ensemble’s



146 Chapter 7. Dynamic recommender ensembles

recommenders is 1. How this step is done depends, mainly, on how many recom-

menders are weighted by predictors, more specifically on whether all or only some of

the combined recommenders are treated by performance predictors. Hence, we con-
sider two options for the distribution of the weights among the recommenders:

a) Only some of the recommenders in the ensemble are given dynamic weights.
The rest of the recommenders receive the same weight, ensuring the weights of
the ensemble’s recommenders sum up to 1. This can be done in different ways:

e Assigning a weight of 0.5 to the unpredicted recommenders, and dividing
all weights by the total sum. This strategy is named as fixed weight or FW.

e Assigning the dynamic weights to the corresponding recommenders, if we
assume that their sum is < 1, then we divide 1 minus the sum of dynamic
coefficients equally among the unpredicted recommenders. We denote
this strategy as ome minus or OM. If the sum is greater than 1, we have to
divide by the total sum and normalise it by the total number of predictors.

b) All recommenders are weighted using a specific predictor per recommender.
This is not easy to grant in general, as there may not be predictors for all the re-
commenders combined. In case this option is taken, the weights can be simply
normalised by the sum of weights.

Furthermore, if the output of each recommender has a different range, it would
be necessary to apply an additional normalisation step to the recommender scores.

The most usual strategies are the ones described in the previous section: score or

rank normalisation (Renda and Straccia, 2003).

7.3 Experimental results

We next report experiments assessing the usefulness of the proposed predictors for
adjusting the weights of a recommender ensemble, once their predictive power has
been confirmed against the recommenders’ actual performance, as reported in the
previous chapter. We identify the combinations of recommenders that meet the con-
ditions stated in the previous section for the dynamic combination problem to make
sense and select the performance predictors to be applied based on their observed
correlation with the performance of the recommenders (as reported in Section 6.5),
and the requirements proposed in this chapter, ie., that one recommender in the
ensemble should have a positive correlation with the predictor, and the other should
have an opposite or near neutral correlation. Then, we compare dynamic against
static ensembles.

Among the different ways to set up static ensembles of two recommenders we
take as baselines a) the best performing one in test, and b) the best theoretical static

one without prior information, i.e., one with A = 0.5. Intuitively, an even weighting
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is the optimum over the — theoretical — set of all recommender ensembles: if say
Ag = 0.3 was the best weight for the combination of two recommenders R1+R2,
then A = 0.3 should be faitly bad for the permutation R2+R1 (1 =1-0.3 = 0.7
being best). If we assume that performance loss is convex with respect to |1 — Ag| —
it can be seen that otherwise the hybrid may underperform its constituents —, then
A = 0.5 is the best compromise for R1+R2 and R2+R1. Since the set of all possible
ensembles includes all the permutations of the combined recommenders, A = 0.5 is
the best (theoretical) overall weight.

We also take as “skylines” (upper bound baselines) an oracle performance pre-
dictor consisting of the performance of the recommender itself. We shall refer to this
method as ‘perfect correlation’, where the true performance of both recommenders
is used as a weight for hybridisation (hence, such predictor would have a correlation
of 1.0 with the recommender’s performance), whereas we shall refer to it as PC-OM’
and PC-FW’ when the performance of only one recommender is used (the same
recommender being weighted by the predictors) along with the one minus or the
fixed weight strategy for weight distribution (see Section 7.2.3). In all cases we apply
a rank normalisation technique on the recommenders’ scores.

In the subsequent sections we present three experiments conducted to evaluate
the proposed performance predictors. In the first experiment we use the rating-based
predictors and test both user- and item-based performance predictors presented in
Section 0.2.1. We use the MovieLens dataset, and compare the results with four of
the evaluation methodologies presented in Chapter 4, i.e., AR, 1R, P1R, and U1IR. In
the second experiment we use predictors based on log data. We evaluate the predic-
tors presented in Section 6.2.2 on the two versions of the Last.fm dataset using the
1R methodology. Finally, in the third experiment we test the social-based predictors
presented in Section 6.3 on the CAMRa dataset and the AR methodology.

7.3.1 Dynamic recommender ensembles on rating data

As a first instantiation of our framework for building dynamic recommender ensem-
bles described in Section 7.2, we first have to identify the recommenders to combine,
that is: one of the recommenders should have a positive correlation with the predic-
tor, while the other should have an opposite or near neutral correlation; besides, they
should not perform very differently.

According to the correlation results presented in Section 6.5.1, we identify the
pairs of recommenders presented in Table 7.1 as combinations meeting the condi-
tions stated above. The first three ensembles are combinations of a collaborative
filtering with a content-based recommendation method. The last ensemble combines
a user-based collaborative filtering method with a non-personalised method, and the

rest of the ensembles are combinations of two collaborative filtering methods. Al-
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R1 R2
HRU1 | TFL1 CB
HRU2 | TFL2 CB
HRU3 kNN CB
HRU4 kNN IB
HRU5 kNN pLSA
HRUG kNN ItemPop

Table 7.1. Selected recommenders for building dynamic ensemble using user performance
predictors that exploit rating-based information (MovieLens dataset).

though some of these combinations have not been typical in the recommender sys-
tems literature, in our study they serve as a proof of concept to check whether the
proposed dynamic recommender ensemble framework is useful in general or not. We
refer the reader to Appendix A.2 for more details about the implementation of the
recommenders.

The first two rows of Table 7.2, Table 7.3, Table 7.4, and Table 7.5 show the
P@10 values for each of the combined recommenders obtained using the AR, 1R,
U1R, and P1R methodologies, respectively. In Appendix A.5.1 we report results with
other evaluation metrics. Note that, as mentioned in Chapter 4, in the AR methodol-
ogy the absolute values are not meaningful since they depend on the amount of rele-
vant information in test; on the other hand, for the 1R related methodologies (i.e.,
1R, U1R, and P1R) the precision at 10 metric has an upper bound on 0.1, since there
is only one relevant item in each ranking.

In these tables we may observe that among the six considered ensembles, there
are cases where the first recommender (with respect to which the performance is
predicted) performs better, worse, or similarly to the second recommender. This
situation changes accross methodologies and provides for a comparison of the result-
ing effects when the stated requirements are not met. Analogously, the predictors’
correlations may change depending on the evaluation methodology followed, as ob-
served in Section 6.5.1. Specifically, the recommenders presented in Table 7.1 where
chosen according to the correlation results obtained for the AR methodology, and
we may observe that some of the conditions stated above do not hold for some of
the selected cases, for instance, correlation between most of the predictors and kNN
recommender is negligible in the 1R, U1R, and P1R methodologies, in contrast with
the results found for the AR methodology.

In the tables we may also observe that the best static ensemble is different de-
pending on the evaluation methodology and the combined recommenders. The per-
formance values of the best static ensembles, on the other hand, show an interesting
situation that does depend on the specific considered ensemble, namely, whether the
(best) static ensembles outperform or not both recommenders. For the AR method-
ology (Table 7.2), in the case of HRU1, HRU3, HRU5, and HRUG, the best static
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HRULI HRU2 HRU3 HRU4 HRU5  HRU6
R1 (A=1.0) 0.0024  0.0696  0.0307 0.0307 0.0307  0.0307
R2 (1=0.0) 0.0163 0.0163  0.0163  0.0001  0.1454  0.0897
Baseline (A=0.5) | 0.0106  0.0473  0.0363  0.0008  0.1142  0.0808
Best static 0.0180 0.0668  0.0392  0.0078  0.1475  0.0937
(best 1) (0.1) (0.9) (0.9) (0.9) (0.1) (0.2)
Perfect correlation | 0.0189  0.0732  0.0401  0.0311  0.1469  0.0980
PC-OM 0.0176  0.0721  0.0434  0.0091  0.1489  0.0958
PC-FW 0.0177 0.0541  0.0379  0.0025 0.1478  0.0958
Entropy-OM 0.0110Y 0.068554 0.0388] 0.0069Y 0.1126Y 0.0791y
ItemSimple-OM 0.0170y 0.06854 0.0390 0.0072y 0.14964 0.09197
ItemUser-OM 0.0172] 0.06804 0.03867 0.0068] 0.15134 0.0924]
RatUser-OM 0.01777 0.06874 0.03933 0.0072y 0.15354 0.0931
Ratltem-OM 0.01787 0.06745 0.03897 0.0066] 0.15424 0.0928
IRUser-OM 0.0169] 0.0668, 0.0387] 0.0066Y 0.14874 0.0922)
IRItem-OM 0.0172] 0.0655] 0.0378] 0.0061Y 0.15004 0.0918]
IRUser ltem-OM 0.0170Y 0.06657 0.0388] 0.0066Y 0.14984 0.0916)
Entropy-FW 0.0111y 0.0528] 0.0369Y 0.0027Y 0.1156] 0.0807Y,
ItemSimple-FW 0.0156] 0.05297 0.0369Y 0.0027Y 0.1433] 0.0908]
ItemUser-FW 0.0166Y 0.05297 0.0368Y 0.0028Y 0.1468] 0.0915)
RatUser-FW 0.0170y 0.0528] 0.0370Y 0.0028Y 0.14984  0.0919]
Ratltem-FW 0.0170y 0.05297 0.0369Y 0.0027Y 0.14994 0.0918]
IRUser-FW 0.0161y 0.0526] 0.0371Y 0.0029Y 0.1420] 0.0912)
IRItem-FW 0.0163] 0.0525] 0.0367Y 0.0027Y 0.14597 0.0909)
IRUserltem-FW 0.0164Y 0.0527Y 0.0372Y 0.0028Y 0.14527 0.0908Y

Table 7.2. Dynamic ensemble performance values (P@10) using AR _methodology and user
predictors (MovielLens dataset). Improvements over the baseline are in bold, the best result
for each column is underlined. The value a of each dynamic hybrid is marked with aj,
where x and y indicate, respectively, statistical difference with respect to the best static
(upper, x) and with respect to the baseline (lower, y). Moreover, A and A indicate,
respectively, significant and non-significant improvements over the corresponding
recommender. A similar convention with ¥ and V indicates values below the recommender
performance. Statistical significance is established by paired Wilcoxon p < 0.05 in all cases.

outperforms both recommenders, but this is not observed for HRU2 nor for HRU4.
In the latter scenarios, thus, it seems hybridisation would not be so useful for combi-
nation.

Additionally, regarding the normalisation of the predictor’s output we evaluate
two normalisation techniques: rank and score normalisation. Since there is no prior
information about which normalisation technique would provide better results, we
test both, and report the best results in each situation, which are usually achieved by
the rank-sim normalisation technique. Finally, the weigh strategy is also included as a
parameter of the experiments. Since we only have a predictor for one of the recom-
menders in the ensemble (denoted as R1), as we explained in Section 7.2.3, we may
weight the unpredicted recommender as one minus the predictor value (OM), or as

0.5 and then divide the weights of the two recommenders by the sum of weights

(FW).
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HRUL HRU2 HRU3 _ HRU4 HRU5 HRU6
R1 (A=1.0) 00221 00690 00437 00437 00437 00437
R2 (1=0.0) 00221 00221 00221 00074 00836  0.0649
Baseline (:=0.5) | 0.0338  0.0536  0.0469  0.0327 0.0749  0.0658
Best static 0.0338 00720 00514 00455 0.0856  0.0696
(best ) (0.4) (0.9) (0.8) (0.9) (0.1) (0.2)
Perfect correlation | 0.0370  0.0715  0.0553  0.0458  0.0840  0.0723
PC-OM 0.0358 00683 00507 00353 00811  0.0709
PC-FW 0.0343 00592 00482 00344 00803  0.0699
Entropy-OM 0.0332y 0.0662] 0.0472Y 0.0382] 0.0709y 0.0626y
ltemSimple-OM | 0.0304Y 0.0666] 0.0473] 0.0384] 0.0844] 0.0681)
ltemUser-OM 0.03057 0.0660] 0.0471Y 0.0381] 0.0847] 0.0680]
RatUser-OM 0.0307y 0.0666] 0.0478] 0.0386] 0.0850] 0.0680)
Ratltem-OM 0.0305y 0.0663] 0.0475] 0.0385] 0.0849] 0.0678
IRUser-OM 0.03047 0.0655] 0.0470Y 0.0381] 0.0839] 0.0675]
IRItem-OM 0.02987 0.0644Y 0.0457y 0.0370] 0.0839] 0.0671]
IRUserltem-OM | 0.0305% 0.0655] 0.0471Y 0.0381] 0.0841] 0.0674]
Entropy-FW 0.03394 0.0594) 0.0472Y 0.0356] 0.0686y 0.0650%
ltemSimple-FW | 0.0321Y 0.0596] 0.0473] 0.0358] 0.0837] 0.0684]
ltemUser-FW 0.0320y 0.0594Y 0.0471Y 0.0356] 0.0843] 0.0683]
RatUser-FW 0.0321y 0.0596 0.0475] 0.0359] 0.0848] 0.06847
Ratltem-FW 0.0321y 0.0595] 0.0473] 0.0358] 0.0847] 0.06847
IRUser-FW 0.0320y 0.0592 0.0471Y 0.0356] 0.0834) 0.0680]
IRItem-FW 0.0318) 0.0588] 0.0465y 0.03497 0.0835] 0.06747
IRUseritem-FW | 0.03203 0.0592] 0.0471Y 0.0356] 0.0837] 0.0678)

Table 7.3. Dynamic ensemble performance values (P@10) using 1R _methodology and user
predictors (MovielLens dataset).

Table 7.2 shows the results obtained following the AR methodology. We may
observe how, except in three cases, dynamic ensembles outperform the baseline.
Interestingly, for HRUS5, the best performing method is not the one obtained with
the ‘perfect correlation’ approach, as we may expect, but with our dynamic ensem-
bles based on the user clarity performance predictors. This is due to the fact that the
corresponding predictor for the first recommender (P@10 values for kNN) also has
a strong correlation with the performance of the second recommender (pLSA), and
thus, it does not satisfy the requirement that the correlation values should not be too
similar for both recommenders.

Table 7.3 shows the results obtained with the 1R methodology. Note that in this
case the correlations were consistently lower than those obtained with the AR meth-
odology. In particular, this is emphasised in the results of the dynamic ensemble
HRUI1, which do not outperform the baseline for almost any predictor. This can be
explained with the results reported in Table 6.9, where the TFL1 recommender ob-
tains a near-zero correlation, and thus, the correlation requirement of our framework
is not satisfied. Specifically, this fact highlights the importance of the strength in the
correlation between the predictor and the recommender performance, as stated in

Section 7.2.1. Furthermore, we may observe in the table that for two combinations
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HRUL HRU2 HRU3 HRU4 HRU5  HRUG6
R1 (A=1.0) 0.0294 00524 00381 00381 00381 0.0381
R2 (1=0.0) 00223 00223 00223 0.0068 00718  0.0406
Baseline (:=0.5) | 0.0345 0.0440  0.0396  0.0283 0.0639  0.0493
Best static 00351 00536 0.0424 0.0384 00732  0.0493
(best 1) (0.6) (0.9) 0.7) (0.9) (0.1) (0.5)
Perfect correlation | 0.0389  0.0552  0.0493  0.0396  0.0742  0.0559
PC-OM 00373 00485 0.0471 00332 00732 0.0548
PC-FW 0.0355 00459 0.0429 0.0307 00722  0.0535
Entropy-OM 0.0345Y 0.0518] 0.0404] 0.0337] 0.0615y 0.0471y
ltemSimple-OM | 0.0333y  0.0519] 0.0403] 0.0339] 0.0723]  0.0444y
ltemUser-OM 0.0334y 0.0517] 0.0403] 0.0336] 0.0726] 0.0438Y
RatUser-OM 0.0335y 0.0521) 0.0410] 0.0341Y 0.0728] 0.0435y
Ratltem-OM 0.0334y 0.0516] 0.0406] 0.0341Y 0.0726] 0.0434y
IRUser-OM 0.0333y 0.0511) 0.0401Y 0.0336] 0.0718] 0.0440y
IRItem-OM 0.03267 0.0504) 0.0388y 0.0325] 0.0714) 0.0430y
IRUserltem-OM | 0.0334Y 0.0511Y 0.0401Y 0.0336] 0.0719] 0.0437¥
Entropy-FW 0.0347] 0.0472] 0.0402] 0.0308] 0.0636y 0.0486
ltemSimple-FW | 0.03427 0.0473] 0.0402] 0.0309] 0.0720] 0.04677
ltemUser-FW 0.03427 0.0471) 0.0401Y 0.0308] 0.0724] 0.0467y
RatUser-FW 0.0343Y 0.0474Y 0.0405Y 0.0310] 0.0727] 0.0469y
Ratltem-FW 0.03427 0.0472] 0.0403] 0.0309] 0.07257 0.0469y
IRUser-FW 0.0341y 0.0470] 0.0401Y 0.0308] 0.0714Y 0.0469y
IRItem-FW 0.0338) 0.0467] 0.0393Y 0.0302] 0.0712) 0.0464Y
IRUserltem-FW | 0.0341Y 0.0471Y 0.0401 0.0308] 0.0716] 0.04697

Table 7.4. Dynamic ensemble performance values (P@10) using the U1R methodology and
user predictors (Movielens dataset)

(HRU2 and HRU5) the best performance results are not obtained by dynamic ap-
proaches, but by the best static approaches in contrast with what we found for the
AR methodology. This situation is different to the one obtained when we evaluate
using MAP@10 (see Appendix A.4.1), where the best results are always obtained by
dynamic ensembles.

Table 7.4 and Table 7.5 show the performance values obtained with the unbiased
methodologies proposed in Chapter 4, that is, UIR and P1R. Following the UIR
methodology (Table 7.4) we obtain similar results to those obtained in the 1R meth-
odology except for HRUG. In contrast, with the P1R methodology (Table 7.5) our
framework does not show improvements over any baseline. We may see that the
‘perfect correlation’ methods are able to obtain better, although very close, values
than those of the best static ensemble. This means that there is room for improve-
ment in this methodology, and that the performance of the dynamic recommender

ensembles could be improved if better performance predictors were found.
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HRUL HRU2 HRU3 HRU4 HRU5  HRUG6
R1 (A=1.0) 0.0203 00348 0.0265 0.0265 0.0265 0.0265
R2 (A=0.0) 0.0197 00197 0.0197 0.0208  0.0604  0.0282
Baseline (:=05) | 0.0470  0.0579  0.0539  0.0269  0.0763  0.0560
Best static 0.0470 0.0593 0.0541 0.0278  0.0796  0.0560
(best 1) (0.5) (0.6) (0.6) 0.7) (0.4) (0.5)
Perfect correlation | 0.0464  0.0579  0.0546  0.0314  0.0767  0.0564
PC-OM 0.0425 00554 0.0528 0.0296 0.0746  0.0537
PC-FW 0.0429 00542 0.0504 0.0282 0.0764  0.0522
Entropy-OM 0.0431y 0.0564y 0.0502y 0.0261y 0.0698y 0.0521y
ltemSimple-OM | 0.0358Y 0.0509y 0.04297 0.0261y 0.0689y 0.04417
ltemUser-OM 0.0361y 0.05127 0.0431y 0.0261y 0.0675%7 0.0444y
RatUser-OM 0.0362y 0.05147 0.04367 0.02637 0.06637 0.0446Y
Ratltem-OM 0.0361y 0.0511y 0.0432y 0.02627 0.0661% 0.0444Y
IRUser-OM 0.0365% 0.05137 0.0435% 0.02637 0.0687% 0.04473
IRItem-OM 0.0357y 0.05047 0.0421y 0.0257%7 0.0669% 0.04397
IRUserltem-OM | 0.0365y 0.05137 0.0434Y 0.02637 0.06757 0.04477
Entropy-FW 0.0457y 0.0577y 0.0524y 0.0265y 0.07457 0.05467
ltemSimple-FW | 0.0410y 0.05403 0.0475y 0.0266] 0.07203  0.0498Y
ltemUser-FW 0.0409Y 0.05387 0.04737 0.0265y 0.0706% 0.0497¥
RatUser-FW 0.04103 0.05407 0.0477% 0.0267%7 0.0691% 0.04997
Ratltem-FW 0.0411y 0.0541y 0.04767 0.0266F 0.0688% 0.04997
IRUser-FW 0.04103 0.05387 0.0474Y 0.0266% 0.0721%7 0.04967
IRItem-FW 0.04067 0.0534Y 0.0467%7 0.0263y 0.06997 0.0491¥
IRUserltem-FW | 0.04097 0.05387 0.0474%7 0.0266y 0.07067 0.0496)

Table 7.5. Dynamic ensemble performance values (P@10) using the PLR _methodology and
user predictors (MovielLens dataset).

In summary, the results show that our methods significantly outperform
static ensembles for different recommender combinations in most of the
evaluation methodologies. Moreover, in most cases our methods also achieve the
best results for each ensemble, let aside the performance of the oracle performance
prediction (perfect correlation) and best static approaches, which use groundtruth
(test) information, differently to the clarity- and entropy-based performance predic-
tors.

Nevertheless, we observe that in those cases where the dynamic ensembles do
not perform better than the static ensembles, the best static approaches use values of
A close to 0.5. We hypothesise that our framework may be biased towatds favouring
those ensembles whose recommender combination is highly unbalanced. Interest-
ingly, although the predictors only weight one of the recommenders (not always the
better performing one) a dynamic ensemble is usually able to find the optimal com-
bination in the unbalanced cases. In particular, this could help to answer why our
dynamic ensembles underperform static approaches for the UIR and P1R method-

ologies, since the best static in these cases seem to be often very close to 0.5.
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R1 R2
HRI1 | pLSA CB
HRI2 | pLSA kNN
HRI3 | ItemPop CB
HRI4 | ItemPop kNN

Table 7.6. Selected recommenders for building dynamic ensembles using item predictors that
exploit rating data (MovieLens dataset).

Using item-based predictors

As we noted in Section 6.5.2, item-based predictors could also be valuable since they
also obtain high correlations with respect to item perfomance. Table 7.6 shows the
selected recommenders that satisfy the correlation requirements with item predictors.
Table 7.7, Table 7.8, and Table 7.9 show the results obtained when these recom-
mender combinations are evaluated and compared against dynamic versions (using
our proposed item predictors), and using the 1R, UIR, and uuU1R methodologies.
In this case, ensemble predictions are computed by means of Equation (7.3) with
values y(u, i) only depending on the current item, that is, y (0).

When measuring the performance of dynamic ensembles that use item-based
performance predictors, we do not compute the perfect correlation predictors be-

cause we do not have a standard metric for item performance. Apart from that, the

HRIL HRI2 HRI3 HRI4
R1 (A=1.0) 0.0836  0.0836  0.0649  0.0649
R2 (1=0.0) 00221  0.0437 00221  0.0437
Baseline (=0.5) | 0.0909  0.0924  0.0886  0.0907
Best static 0.0909  0.0924  0.0886  0.0907
(best 1) (0.5) (0.5) (0.5) (0.5)
Entropy-OM 0.0708y  0.0858y  0.0684y  0.0831y
UserSimple-OM | 0.0761y  0.0905y  0.07237  0.0837%
Userltem-OM 0.07767  0.0903y  0.0749Y7  0.0843y
Ratltem-OM 00751y  0.0893y  0.07127  0.08247
RatUser-OM 0.07597  0.0892Y  0.0674y  0.07897
URItem-OM 0.07767  0.0911y  0.0797%7  0.0885y
URUser-OM 00781y  0.0906Y  0.0721y  0.08207
URItemUser-OM | 0.07773  0.0909y  0.0777%  0.08697
Entropy-FW 0.0798y  0.0923y  0.0771y  0.0895y
UserSimple-FW | 0.09464  0.09794  0.09164  0.09494
Userltem-FW 0.09494  0.0980A  0.09204  0.09504
Ratltem-FW 0.09444  0.09794  0.09134  0.09484
RatUser-FW 0.09464  0.09784  0.09084  0.09424
URItem-FW 0.09404  0.09814  0.09234  0.09584
URUser-FW 0.09464  0.09784  0.09124  0.09454
URItemUser-FW | 0.09444  0.09804  0.09214  0.09544

Table 7.7. Dynamic ensemble performance values (P@10) using 1R methodology with item
predictors (MovielLens dataset).
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rest of the experimental settings is the same as those described above for dynamic
hybrids with user-based performance predictors.

Table 7.7 shows the results obtained by using item-based predictors and the 1R
methodology. We may observe that if the predictors are weighted using the FW
strategy, dynamic ensembles outperform static combinations in every situation, ex-
cept for the Entropy predictor. It is interesting to note that, differently to user-based
predictors, the dynamic ensembles are able to outperform the best static ensemble
even when they are close to the baseline with A = 0.5. The reader may compate Ta-
ble 7.4 and Table 7.7 to observe these differences.

In Table 7.8, where the methodology U1R is used, a very similar situation occurs,
although not all dynamic ensembles outperform the static approach with the FW
strategy. Specifically, the dynamic hybrid weighted by the URItem clarity predictor
clearly obtains better performance than the rest of the dynamic and static ensembles,
in particular the HRI3 and HRI4 combinations.

Finally, the performance results found for the uuU1R methodology are pre-
sented in Table 7.9, in which the test ratings — i.e., the users — are uniformly distrib-
uted over the items, items previously uniformly distributed in the test (like in the
U1R methodology). In this experiment, the performance of the dynamic ensemble is
much better than in the previous experiments, since all the rating-based item pre-
dictors (except for the Entropy predictor) outperform the static baseline no

matter the weighting strategy in three out of four recommender combinations.

HRI1 HRI2 HRI3 HRI4
R1 (A=1.0) 0.0718 0.0718 0.0406 0.0406
R2 (A=0.0) 0.0223 0.0381 0.0223 0.0381
Baseline (A=0.5) 0.0764 0.0812 0.0630 0.0689
Best static 0.0764 0.0812 0.0630 0.0689
(best 2) (0.5) (0.5) (0.5) (0.5)
Entropy-OM 0.0571y  0.0652y  0.04357  0.0508y
UserSimple-OM 0.0657y  0.07167  0.03997  0.0450y
Userltem-OM 0.0671y  0.0721y  0.04257  0.0462§
Ratltem-OM 0.0645y  0.0699y  0.03927  0.0435y
RatUser-OM 0.0620y  0.0671y  0.03357  0.0382y
URItem-OM 0.0705y  0.0757y  0.04967  0.0532§
URUser-OM 0.0650y  0.0699y  0.03727  0.0414y
URItemUser-OM | 0.0690y  0.0741y  0.0462y  0.0500%
Entropy-FW 0.0668y  0.0757y  0.05187  0.0595y
UserSimple-FW 0.08404 0.08864  0.0601y  0.0658%
Userltem-FW 0.08444 0.08874  0.0609y  0.0663y
Ratltem-FW 0.08394 0.08834  0.05987  0.0653y
RatUser-FW 0.08314 0.08764  0.05737y  0.0630y
URItem-FW 0.08514 0.08974  0.06424  0.0698%
URUser-FW 0.08364  0.08814  0.05857  0.0642y
URItemUser-FW | 0.08484  0.08934  0.0625y  0.0680%

Table 7.8. Dynamic ensemble performance values (P@10) using ULR methodology with item
predictors (MovielLens dataset).
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HRIL HRI2 HRI3 HRI4
R1 (A=1.0) 0.0536  0.0536  0.0225  0.0225
R2 (1=0.0) 00198 00275 00198  0.0275
Baseline (A=0.5) | 0.0374  0.0440  0.0239  0.0256
Best static 0.0491 00502  0.0239  0.0271
(best 1) (0.9) (0.9) (0.6) (0.2)
Entropy-OM 0.0324y  0.0385y  0.0236Y  0.02804
UserSimple-OM | 0.05102  0.05484  0.0237Y  0.02824
Userltem-OM 0.05144  0.05474  0.0236Y  0.02804
Ratltem-OM 0.05164  0.05474  0.0237Y  0.02814
RatUser-OM 0.05234  0.05514 0.0237Y  0.02824
URItem-OM 0.04984  0.05364 0.0234Y  0.02804
URUser-OM 0.05184  0.05514  0.0234y  0.02794
URItemUser-OM | 0.05054  0.05424  0.0235y  0.02804
Entropy-FW 0.0344y  0.0410y  0.02412  0.02754
UserSimple-FW | 0.04352  0.050352  0.02444  0.02764
Userltem-FW 0.0435]  0.05012  0.02454  0.02754
Ratltem-FW 0.0436]  0.05044  0.02444  0.02754
RatUser-FW 0.0440]  0.05094  0.02454  0.02764
URItem-FW 0.0429]  0.04944  0.02444  0.0273%
URUser-FW 0.0438]  0.05064  0.02454  0.02744
URItemUser-FW | 0.0432)  0.0498%2  0.02454  0.02744

Table 7.9. Dynamic ensemble performance values (P@10) using uuU1R methodology with
item predictors (MovieLens dataset).

In the other combination (HRI3) the best strategy is FW, the same as with the other

evaluation methodologies.

7.3.2 Dynamic recommender ensembles on log data

In this section we present experiments in which log-based predictors are used to dy-
namically weight an ensemble’s recommenders. As with rating-based information, in
this case we first have to select suitable recommenders to combine according to the
requirements established in our framework. Hence, we choose the combinations
HL1, HL.2 and HL3 presented in Table 7.10, where, as before, the performance pre-
dictors weight the recommender denoted as R1.

The Last.fm dataset contains timestamped log-based information. As noted in
Chapter 4, for efficiency reasons, we only use the 1R methodology in this dataset.
Table 7.11 shows the results obtained with a temporal split of the data, and Table
7.12 shows the results obtained with a random split (five-fold) of the data.

R1 R2
HL1 kNN CB
HL2 kNN ItemPop
HL3 pLSA kNN

Table 7.10. Selected recommenders for building dynamic ensembles using performance
predictors that exploit log-based information (Last.fm dataset).
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HL1 HL2 HL3
R1 (A=1.0) 0.0603 0.0603 0.0926
R2 (1=0.0) 0.0916 0.0797 0.0603
Baseline (A=0.5) 0.0852 0.0755 0.0820
Best static 0.0914 0.0812 0.0925
(best 1) (0.2) (0.2) (0.9)
Perfect correlation 0.0890 0.0783 0.0863
PC-OM 0.0869 0.0771 0.0851
PC-FW 0.0849 0.0751 0.0826
ItemSimple-OM 0.0904Y 0.0804Y 0.0901Y
Autocorrelation-OM 0.08157 0.07227 0.0781y
TimeSimple-OM 0.0905Y 0.0789Y 0.08987
ItemTime-OM 0.0906Y 0.0804Y 0.0902Y
ItemPriorTime-OM 0.0885Y 0.0778Y 0.0863Y
ItemSimple-FW 0.0903Y 0.0802Y 0.0891Y
Autocorrelation-FW 0.0842Y 0.0746y 0.0809y
TimeSimple-FW 0.0901Y 0.0785Y 0.0884Y
IltemTime-FW 0.0904Y 0.0800Y 0.0891Y
ItemPriorTime-FW 0.0883Y 0.0775Y 0.0855Y

Table 7.11. Dynamic ensemble performance values (P@10) using the 1R methodology with
the log-based user predictors (Last.fm, temporal split).

HL1 HL2 HL3
R1 (A=1.0) 0.0204 0.0204 0.0836
R2 (1.=0.0) 0.0828 0.0767 0.0204
Baseline (A=0.5) 0.0764 0.0643 0.0704
Best static 0.0818 0.0767 0.0837
(best 1) (0.2) (0.1) (0.9)
Perfect correlation 0.0818 0.0760 0.0829
PC-OM 0.0816 0.0755 0.0823
PC-FW 0.0815 0.0745 0.0811
ItemSimple-OM 0.07991 0.0730% 0.0771Y
Autocorrelation-OM 0.0717Y7 0.0596y 0.0686Y
TimeSimple-OM 0.08147 0.07627 0.05185
ItemTime-OM 0.08061 0.07341 0.0761Y
ItemPriorTime-OM 0.0770Y 0.0658Y 0.07437
ItemSimple-FW 0.08041 0.07261 0.0739Y
Autocorrelation-FW 0.0756y 0.0631y 0.06977
TimeSimple-FW 0.08147 0.0753] 0.0579
ItemTime-FW 0.0808] 0.07281 0.0732Y
ItemPriorTime-FW 0.0783Y 0.0671Y 0.07197

Table 7.12. Dynamic ensemble performance values (P@10) using the 1R methodology with
log-based user predictors (Last.fm, five-fold random split).

We can see that the results of both tables are analogous. The dynamic ensem-
bles weighted by the log-based performance predictors outperform the base-
line static ensemble in all cases, except with the Autocorrelation predictor.
This result is consistent with the correlations presented in Table 6.14 and Table 6.15,
where autocorrelation obtained the lowest (absolute) correlation value for the kNN
recommender on both versions of the dataset. Regarding the pLLSA recommender (in

the combination HL3), the Autocorrelation and TimeSimple predictors obtain com-
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R1 R2
HS1 Personal pLSA
HS2 Personal kNN

HS3 PureSocial pLSA
HS4 PureSocial kNN

Table 7.13. Selected recommenders for building dynamic ensembles using social-based
user predictors (CAMRa dataset).

parable correlations with the combined recommenders, yet the performance of the
corresponding dynamic ensembles is very different, thus suggesting that, although we
have found a dependence between the predictors’ power in terms of correlation, and
their effectiveness in weighting hybrids, this is not a strict necessary condition to
obtain improvements over the static ensembles.

The best performance values were achieved either by single recommenders or by
the best static ensembles. When the best results are obtained by single recommenders
emphasises the fact that no hybridisation is required for that combination (like in
HL1 and HL3 for the temporal split, and HL.1 and HL.2 for the random split). In the
other case, when the best results are achieved by the best static ensembles, it may
restrict the usefulness of our approach, although our proposed dynamic ensembles
significantly outperform the baseline static ensembles for some predictors such as
TimeSimple and ItemSimple. We have to recall that the best static ensembles are in
fact optimised using the test set, which is clearly not a fair comparison. The results of
the perfect correlation ensembles in the random split are always better than those
obtained by the performance predictors, confirming that predictors with stronger
correlations should obtain better performance results when used for dynamic en-

sembles.

7.3.3 Dynamic recommender ensembles on social data

In the third experiment we exploit the social information available in the CAMRa
dataset to combine collaborative and social filtering recommenders using social-
based performance predictors. Table 7.13 shows the recommender combinations
selected based on the correlations obtained in Section 6.5.4. Here, we present 4 en-
sembles where the two social filtering recommenders, Personal and PureSocial, are
combined with two collaborative filtering recommenders, pLSA and kNN. We saw
in Section 6.5.4 that most of the social-based predictors obtained higher correlations
with the social filtering recommenders, and lower or negligible correlations with the
collaborative filtering recommenders, at least for the social version of the dataset
(Table 6.16). The situation for the collaborative-social version was not so clear, but
for the sake of coherence, we use the same set of ensembles in both versions of the

dataset.
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As we mentioned in Section 6.5.4, due to the lack of coverage of the social filter-
ing recommenders, the only methodology that provides sensible results is the AR
methodology. In this section we present the results obtained using this methodology
on the two available versions of the CAMRa dataset: social and collaborative-social.

Table 7.14 shows the results obtained on the social version of the CAMRa data-
set. We see that only for one out of the four recommender combinations, the dy-
namic ensembles consistently outperform the baseline static ensemble. However, it is
interesting to note that the best value is always achieved by the perfect correlation
ensemble, which means that further improvements could be possible if we were able
to find predictors with stronger correlations.

In the collaborative-social version of the dataset (Table 7.15) the results are simi-
lar, except that now for HS2, the best result is obtained by the best static ensemble.
Moreover, a larger number of dynamic ensembles outperform the baseline static en-
semble HS3, whereas at least one dynamic ensemble outperforms the baseline HS1,
which is a better result than the one shown in the previous Table 7.14. We hypothe-
sise this is because on this version of the dataset the individual recommenders display
a more similar performance to each other (compare the differences between R1 and
R2 in Table 7.14 and Table 7.15).

Furthermotre, some of the correlations obtained for the CAMRa collaborative

HS1 HS2 HS3 HS4
R1 (A=1.0) 0.1066 0.1066 0.1072 0.1072
R2 (1.=0.0) 0.1007 0.0226 0.1007 0.0226
Baseline (1=0.5) 0.1509 0.1142 0.1599 0.1219
Best static 0.1524 0.1200 0.1632 0.1219
(best 1) (0.4) (0.7) (0.3) (0.5)
Perfect correlation 0.1608 0.1188 0.1640 0.1237
PC-OM 0.1202 0.1164 0.1254 0.1199
PC-FW 0.1189 0.1143 0.1263 0.1219
AvgNeighDeg-OM 0.1489Yy  0.11957 0.1599Y 0.1131§
BetCentrality-OM 0.14437  0.1132Y 0.1487y 0.1114%
ClustCoeff-OM 0.1465Y  0.1123Y 0.14837 0.1108%
Degree-OM 0.1472Yy  0.11547 0.16147 0.1107§
EgoCompSize-OM 0.1461Yy  0.11587 0.1596Y 0.1140§
HITS-OM 0.1485Y  0.1200, 0.1467y 0.1134y
PageRank-OM 0.1471Y  0.1167Y 0.1579Y 0.1123§
TwoHopNeigh-OM 0.1478Y  0.1171Y 0.1585Y 0.1118§
AvgNeighDeg-FW 0.1518Y  0.11917 0.16237 0.1204y
BetCentrality-FW 0.1491Y  0.11807 0.1577Y 0.1213y
ClustCoeff-FW 0.1500Y  0.11827 0.1566y 0.1189y
Degree-FW 0.1489Y  0.11917 0.1627Y 0.1208y
EgoCompSize-FW 0.1489Y  0.11937 0.1618Y 0.1210y
HITS-FW 0.1482y  0.11957 0.1564y 0.1202y
PageRank-FW 0.1491Y  0.11867 0.1610Y 0.1211y
TwoHopNeigh-FW 0.1500Yy  0.11957 0.1619Y 0.1211y

TaTable 7.15. Dynamic ensemble performance values (P@10) using the AR methodologyith
sowith social-based user predictors (CAMRa, collaborative dataset).
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dataset are more discriminative between the combined recommenders, in the sense
that, for instance, the correlations between the two-hop neighbourhood predictor
and the Personal recommender were -0.123 and -0.121 in the social and collabora-
tive-social datasets, respectively. However, the correlations between the two-hop
neighbourhood predictor and kNN were 0.004 and 0.130, that is, in the second data-
set the relative distance in correlation between these two recommenders is larger,
according to the correlation with respect to the predictor. This change in the correla-
tions may explain the fact that in Table 7.15 some of the dynamic ensembles outper-
form the perfect correlation ensemble, which does not take the relative correlation
into account with respect to each individual recommender, as noted in 7.3.1.

In general, the HITS predictor obtains the best results among the dynamic
ensembles for some of the tested combinations. Other predictors such as the
betweenness centrality and the ego components size produce more competi-
tive ensembles in the social version of the dataset, whereas the degree and the
average neighbour degree preditors provide better results for more than one combi-
nation in the CAMRa collaborative dataset.

7.3.4 Discussion

The analysis of the results presented in this chapter shows that ensembles can indeed
benefit from a dynamic weighting of their recommenders. In particular, we have seen
that when these weights come from performance predictors, which previously had
shown significant correlation with the performance of individual recommenders, the
resulting dynamic ensemble tends to outperform static combinations of the recom-
menders. In this context, in order to obtain successful hybridisations, we have to take
several variables into account, which correspond to three stages proposed in our
framework: the correlation between the predictor and the combined recommenders,
the relative performance of such recommenders, the strategy to normalise the predic-
tor’s values, and the weight distribution among recommenders.

The relative performance of the recommenders has proven to be decisive, since
in some cases, hybridisation does not make sense to begin with, when the difference
in performance between the recommenders is significant and systematic, and thus,
dynamic ensembles cannot obtain the best performance result, although they may
outperform static ensembles. Performance prediction normalisation and weight dis-
tribution, on the other hand, do make a difference in the results. Although no explicit
results are presented in this work regarding different normalisation approaches, pre-
viously conducted experiments showed us that score normalisation produce worse
results than rank normalisation. Finally, the weight distribution strategy is not as
critical as other stages of our framework, but helps to obtain much better results,

specifically, when the one minus strategy (OM) is used.
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The obtained results have also shown that more complex formalisations and
probability models do not necessarily lead to better results, with respect to the adap-
tation and definition of the user and item clarity performance predictors. In this ad-
aptation, various configurations were available, and we experimented with further
extensions of different language models for the same clarity model, using rating and
log-based information. Additionally, several graph-based metrics were tested, where
the concept of the user’s strength in a social network is modelled in different ways.

We find that different formulations for the user-based performance clarity pre-
dictor consistently obtain the best results in different situations for rating-based pref-
erence information. We also experimented with item-based predictors, and found
that the UserItem, URItem, and RatUser predictors were noticeably better than the
rest of the formulations. When log-based information is exploited, the ItemTime and
TimeSimple predictors obtained better results than other predictors not based on the
clarity concept, such as the Autocorrelation function. Moreover, regarding the social-
based ensembles, the HITS, two-hop neighbourhood, and average neighbour degree
approaches cleatly outperform the ensemble weighted by the rest of the predictors
and, in most of the cases, also outperform the baseline static ensemble.

These results are, in general, consistent with the correlation values between the
predictors’ output values and the recommenders’ performance values. Figure 7.2
shows a summary of the results presented in this and previous chapters, where the
difference in correlation is plotted against the gain (or loss) in performance with re-

spect to the baseline. For this figure, the best and worst dynamic ensembles were
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Figure 7.2. For each best and worst dynamic ensemble in Table 7.2, Table 7.11 and Table 7.15,
this graph plots the difference in correlation between each predictor and a recommender
against the difference in performance between the ensemble and the baseline.
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selected from Table 7.2, Table 7.11 and Table 7.15. In the figure we may observe the
trend that the larger the difference in correlation, the better the improvement over
the baseline, which is in concordance with the requirement that both correlations
should not be very similar. These results provide some insights in order to under-
stand which features may help configure well performing dynamic recommender
ensembles, where performance predictors have emerged as a clear useful characteris-

tic.

7.4 Conclusions

In this chapter we have explored how the performance of a recommender ensemble
can be improved by dynamically assigning the weights of its recommenders, by ana-
lysing the performance correlation between the values of a performance predictor
and the performance of an individual recommender. In this way, we have proposed a
dynamic hybrid framework that let decide when and how dynamic hybridisation
should be done.

Drawing from the performance predictors proposed in the previous chapter, we
have conducted several experiments in order to assess whether recommender en-
sembles can benefit from dynamic weights according to such predictors. The results
obtained in our experiments indicate that a strong correlation with performance
tends to correspond with enhancements in ensembles by using the predictor for
weight adjustment. The dynamic ensembles usually outperformed the baseline static
ensemble for different recommender combinations, supporting their effectiveness in
different situations.

In future work we aim to evaluate our framework with more than two recom-
menders in an ensemble, and more than one performance predictor, eventually, one
for each recommender. We also plan to test different normalisation strategies of the
predictor’s values, where several assumptions about the ideal weight distribution can
be verified, such as whether the user’s rating distribution or the recommender’s out-
put are beneficial for the final performance of the ensemble. Moreover, Machine
Learning approaches could also be used to learn the best weights in a user (or item)
basis. Despite being more time consuming, these techniques may also achieve good
results in terms of performance of the dynamic ensemble, although they are usually

more prone to overfit the learned weights.






Chapter 8

Neighbour selection and
weighting in user-based

collaborative filtering

User-based recommender systems suggest interesting items to a user relying on simi-
lar-minded people called neighbours. The selection and weighting of the input from
these neighbours characterise different variants of the approach. Thus, for instance,
while standard user-based collaborative filtering strategies select neighbours based on
user similarities, trust-aware recommendation algorithms rely on other aspects indica-
tive of user trustworthiness and reliability.

In this chapter we restate the user-based recommendation problem, generalising it
in terms of performance prediction techniques. We investigate how to adopt this gen-
eralisation to define a unified framework where we conduct an objective analysis of the
effectiveness (predictive power) of neighbour scoring functions. We evaluate our ap-
proach with several state-of-the-art and novel neighbour scoring functions on two
publicly available datasets. The notion of performance takes here a different nuance
from previous chapters. More precisely, we consider the notion of neighbour perform-
ance, for which we propose several measures and new predictors. In an empirical
comparison involving four neighbour quality metrics and thirteen performance predic-
tors, we find a strong predictive power for some of the predictors with respect to cer-
tain metrics. This result is then validated by checking the final performance of recom-
mendation strategies where predictors are used for selecting and/or weighting user
neighbours. As a result, we are able to anticipate which predictors will perform better
in neighbour scoring powered versions of a user-based collaborative filtering algo-
rithm.

In Sections 8.1 and 8.2 we present a unified formulation and the proposed
framework for neighbour selection and weighting in user-based recommendation, and
in Section 8.3 we describe how the different neighbour scoring functions proposed in
the literature fit into the framework. Finally, in Section 8.4 we present an experimental

evaluation of the framework, and in Section 8.5 we provide conclusions.
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8.1 Problem statement

We focus on user-based collaborative filtering algorithms, one type of memory-based
approaches that explicitly seek people — commonly called neighbours — having pref-
erences (and/or other characteristics of interest) in common with the target user, and
use such preferences to predict item ratings for the user. User-based algorithms are
built on the principle that a particular user’s rating records are not equally useful to
all other users as input to provide them with item suggestions (Herlocker et al.,
2002). Therefore, as stated in Chapter 2, central aspects to these algorithms are a)
how to identify which neighbours form the best basis to generate item recommenda-
tions for the target user, and b) how to properly make use of the information pro-
vided by them. Once the target user’s neighbours are selected, the more similar a
neighbour is to the user, the more her preferences are taken into account as input to
produce recommendations.

A common user-based recommendation approach consists of predicting the
relevance of an item for the target user by a linear combination of her neighbours’
ratings, which are weighted by the similarity between the target user and her
neighbours, as presented in Equation (2.3). For the sake of clarity, and since we shall

later elaborate from it, we reproduce here the above equation:

F) =@ +C Y sim@v)(r@i) - @) &)
VEN (u,0)

User similarity has been the central criterion for neighbour selection in most of
the user-based collaborative filtering approaches (Desrosiers and Karypis, 2011).
Nonetheless, recently it has been suggested that additional factors could have a valu-
able role to play on this point. For instance, two users with a high similarity value
may no longer be reliable predictors for each other at some point because of a diver-
gence of tastes over time (O’Donovan and Smyth, 2005). Thus, in the context of
user-based collaborative filtering, more complex methods have been proposed in
order to effectively select and weight useful neighbours (O’Donovan and Smyth,
2005; Desrosiers and Karypis, 2011). In this context a particularly relevant dimension
relates the above additional factors with the general concept of trust (trustworthiness,
reputation) on a user’s contribution to the computation of recommendations. Hence,
a number of trust-aware recommender systems have been proposed in the last dec-
ade (Hwang and Chen, 2007; O’Donovan and Smyth, 2005; Golbeck, 2009).

Most of these systems focus on the improvement of accuracy metrics, such as
the Mean Average Error, by defining different heuristic trust functions, which, in
most cases, are applied either as additional weighting factors in the neighbourhood-
based formulation, or as a component of the neighbour selection criteria. The way

trust is measured is considerably diverse in the literature. In fact, the notion of trust
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has embraced a wide scope of neighbour aspects, spanning from personal trust on
the neighbour’s faithfulness, to trust on her competence, confidence in the correct-
ness of the input data, or the effectiveness of the recommendation resulting from the
neighbour’s data. More specifically, in trust-aware recommender systems, a trust
model is defined and, typically, introduced into the Resnick’s equation (Equation
(8.1)) either as an additional weight or as a filter for the potential user’s neighbours.
Moreover, depending on the nature of their input, different types of trust-aware rec-
ommendation approaches can be distinguished: rating-based approaches, and social-
based approaches (using a trust network).

One of the first works that proposed rating-based trust metrics between users is
(O’Donovan and Smyth, 2005). In that work O’Donovan and Smyth propose to
modify how the “recommendation partners” (neighbours) are weighted and selected
in the user-based collaborative filtering formula. They argue that the trustworthiness
of a particular neighbour should be taken into account in the computed recommen-
dation score by looking at how reliable her past recommendations were. Trust values
are computed by measuring the amount of correct recommendations in which a user
has participated as a neighbour, and then they are used for weighting the influence
(along with computing the similarity), and selecting the target user’s neighbours.
Weng et al. (2006) propose an asymmetric trust metric based on the expectation of
other users’ competence in providing recommendations to reduce the uncertainty in
predicting new ratings. The metric is used in the standard collaborative filtering for-
mula instead of the similarity value. Two additional metrics are defined in (Kwon
et al., 2009) based on the similarity between the ratings of a neighbour and the rat-
ings from the community. Finally, Hwang and Chen (2007) define two trust metrics
(local and global) by averaging the prediction error of co-rated items between a user
and a potential neighbour.

Social-based trust metrics make use of explicit trust networks of users, built upon
friendship relations (Massa and Avesani, 2004; Massa and Bhattacharjee, 2004) and
explicit trust scores between individuals in a system (Ma et al., 2009; Walter et al,,
2009). These metrics and, to some extent, their inherent meanings, are different with
respect to rating-based metrics. Nonetheless, Ziegler and Lausen (2004) conduct a
thorough analysis that shows empirical correlations between trust and user similari-
ties, suggesting that users tend to create social connections with people who have
similar preferences. Once such a correlation is proved, techniques based on social-
based trust can be applicable. Golbeck and Hendler (2006) propose a metric called
TidalTrust to infer trust relationships by using recursive search. Inferred trust values
are used for every user who has rated a particular item in order to select only those
users with high trust values. Then, a weighted average between past ratings and in-

ferred trust values provides the predicted ratings. Massa and Avesani (2007b) ex-
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periment with local (MoleTrust) and global (PageRank) trust metrics, showing that
trust-based recommenders are very valuable for cold start users.

The research presented here seeks to provide an algorithmic generalisation for a
significant variety of notions, computational definitions, and roles of trust in
neighbour selection. Specifically, we aim to provide a theoretical framework for
neighbour selection and weighting in which trust metrics can be defined and evalu-
ated in terms of improvements on a final recommender’s performance. We cast the
rating prediction task — typically based, as described above, on the aggregation of
neighbour preferences — into a framework for dynamic combination of inputs, from
a performance prediction perspective, borrowing from the methodology for this area
in the Information Retrieval field. The application of this perspective is not trivial,
and requires a definition of what the performance of a neighbour means in this con-
text. Hence, restated the problem in these terms, we propose to adapt and exploit
techniques and methodologies developed in Information Retrieval for predicting
query performance; in our case the target uset’s neighbours are equivalent to the que-
ries, and our goal is to predict which of these neighbours will perform better for the
target user.

Furthermore, since our framework provides an objective measure of the
neighbour scoring function efficiency, we would be able to obtain a better under-
standing of the whole recommendation process. For instance, if the results obtained
when a particular function is introduced in a recommender are not consistent with
the (already observed) objective performance measures, it would mean that the cho-
sen strategy is not the most appropriate, suggesting to experiment with further
strategies, providing such a function has already shown some predictive power.

Therefore, the main contribution of our framework is that it provides a formal
setting for the evaluation of neighbour selection and weighting functions, while, at
the same time, enables to discriminate whether recommendation performance im-
provements are achieved by the neighbour scoring functions, or by the way these
functions are used in the recommendation computation. Besides, our framework
provides an unification of state-of-the-art trust-based recommendation approaches,
where trust metrics are casted as neighbour performance predictors. As a result, in
this chapter, we shall propose four neighbour quality metrics and thirteen perform-
ance predictors, defined upon a specific neighbour (user-based), a neighbour and the
current user (user-user), or a neighbour and the current item (user-item). We shall
generalise the different strategies proposed in the literature to introduce trust into
collaborative filtering. Moreover, thanks to the proposed formulation, we will define

and evaluate new strategies.
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8.2 A performance prediction framework for

neighbour scoring

8.2.1 Unifying neighbour selection and weighting in user-

based Recommender Systems

From the observation that most of the methods for neighbour selection and weight-
ing are elaborated upon the standard Resnick’s scheme (Equation (8.1)), we propose
a unified formulation as follows. Let us suppose, for the sake of generality, that we
have a neighbour scoring function s(u, v, ) that may depend on the target user u, a
neighbour v, and a target item . This function outputs a higher value whenever the
user, neighbour, item, or a combination of them, is more trustworthy (in the case of
trust models), or is expected to perform better as a neighbour according to the in-
formation available in the system, such as other ratings and external information, like

a social network. Using this function we generalise Equation (8.1) to:

F(u,i) = 7(u) + C z 299 (s(u, v, D), sim(w, ) (r(, ) = 7)) (g 5
vefnetgh(y,i:k;s)

where the function f™9" denotes the selection of the set of neighbours, and f*99
is an aggregation function combining the output of s and the user similarity into a
single weight value. In this way, we integrate the neighbour scoring function s into
the Resnick’s formula in order to: a) select the neighbours to be considered, instead
of or in addition to the most similar users (via function f™9") and b) provide a
general weighting scheme by introducing an aggregation function f*99 between the
actual neighbour score and the similarity between the target user and her neighbours.
Note that it is not required that s is bounded, since a constant C would normalise the
output rating value. The function s is thus a core component in the generalisation of
the user-based collaborative filtering techniques. It may embody similarity in itself (in
such case {99 may just return its first input argument), but sim and f%99 are left to
simplify the connection with the original similarity-only formulation, and to suit par-
ticular cases where S applies other principles distinct to similarity.

The aggregation function f%99 can take different definitions, some examples of
which can be found in the literature. For instance, O’Donovan and Smyth (2005)
initially propose to use the arithmetic mean of the neighbour score (x) and the simi-
larity (y; henceforth denoted as f;"?), and end up using the harmonic mean (f,"99)
because of its better robustness to large differences in the inputs. In (Bellogin and
Castells, 2010), on the other hand, we use the product function (f3agg). Moreover,
Hwang and Chen (2007) propose to directly use the neighbour score as the weight
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given to neighbours, that is, they use the projection function f, 79 (x,y) = x. Obvi-
ously, the original Resnick’s formulation can be expressed as the symmetric projec-
tion function foagg (x,y) =y.

The neighbourhood selection embodied in function f™W9" also generalises Res-
nick’s approach — the latter corresponds to the particular case foneigh(u, L k;s) =
Ny (u, i), where the neighbour scoring function is ignored, and only similarity is used.
The general form admits different instantiations. In (Golbeck and Hendler, 2006)
only the users with the highest trust values are selected as neighbours. In
(O’Donovan and Smyth, 2005), on the other hand, those users whose trust values
exceed a certain threshold are taken into consideration. This threshold is empirically
defined as the mean across all the obtained values for each pair of users. The latter

strategy can be formulated as follows:
; 1
nelgh i ks s) = fveN,(wi):s(uv,i)>th 1= 77— Z s(u,v,i)
£ ¢ (w0 Ly

There are, nonetheless, some considerations to take into account when using
specific combinations of neighbour weighting and neighbour selection functions.

. .- pa . . neigh
First, if f, 99 is used together with f;"“*

— only considering the most similar users
in the neighbourhood —, then less reliable users (with low ff‘gg) who are very similar
to the current user would be penalised, and more reliable neighbours but less similar

to the current user are ignored, since they do not belong to the neighbourhood. Sec-

ond, when using foagg together with flneigh, neighbours are weighted by their simi-
larities with the target user. These similarities, however, could be very low, and thus,
non-similar but reliable neighbours would be penalised. Finally, if f4agg is used with
flneigh, the similarity weight will not be considered at any point in the recommenda-
tion process.

Some of these configurations may deserve further investigation, and are consid-

ered in Section 8.4, along with other combinations not listed here.

8.2.2 Neighbour selection and weighting as a

performance prediction problem

Neighbour scoring and selection can be seen as a task of predicting the effectiveness
of neighbours as input for collaborative recommendations. In this section we elabo-
rate and adapt the performance prediction framework presented in Chapter 5 to the
problem of neighbour selection and weighting.

The same as performance prediction in Information Retrieval, which has been
used to optimise rank aggregation (Yom-Tov et al., 2005a), in our proposed frame-

work each user’s neighbour can be considered as a retrieval subsystem (or criterion)
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whose output is combined to form a final system’s output (the recommendations) to
the user.

For user-based collaborative filtering algorithms, the estimation 7(u, i) of the
preference of the target user u for a particular item i can be formulated as an aggre-

gation function of the ratings of some other users V/:

7(u, ) o aggryep (sim(u, v); r(v,0); 7 (W); F(v) (8.3)
where V denotes the selected neighbours for a particular user U according to func-
tion fM¢W9R (see Equation (8.2)). As observed in (Adomavicius and Tuzhilin, 2005),
different aggregation functions can be defined, but the most typical one is the
weighted average function presented in the previous section.

In the previous function the term 7(u, i) can be seen as a retrieval function that
aggregates the outputs of several utility subfunctions r(v,i) — 7(v), each corre-
sponding to a recommendation obtained from a neighbour of the target user. The
combination of utility values is defined as a linear combination (translated by 7(u))
of the neighbours’ ratings, weighted by their similarity sim(u, v) with the target user.
Hence, the computation of utility values in user-based filtering is equivalent to a typi-
cal rank aggregation model of Information Retrieval, where the aggregated results
may be enhanced by predicting the performance of the combined recommendation
outputs. In fact, the similarity value can be seen as a prediction of how useful a
neighbour’s advice is expected to be for the target user, which has proved to be a
quite effective approach. The question is whether other performance factors beyond
user similarity can be considered in a way that further enhancements can be drawn,
as research on user trust awareness has attempted to prove in the last years.

The Information Retrieval performance prediction view provides a methodo-
logical approach, which we propose to adapt to the neighbour selection problem.
The approach provides a principled path to drive the formulation, development and
evaluation of effective neighbour selection and weighting techniques, as we shall see.
In the proposed view, the selection/weighting problem is expressed as an issue of
neighbour performance, as an additional factor (besides user similarity) to automati-
cally tune the neighbours’ contribution to the recommendations, according to the
expected goodness of their advice. As summarised in Section 5.1, there are three core
concepts in the performance prediction problem as addressed in the Information
Retrieval literature: performance predictor, retrieval quality assessment, and predictor
quality assessment. Since we are dealing with the prediction of which users may per-
form better as neighbours, the above three concepts can respectively be translated
into neighbour performance predictor, neighbour quality, and neighbour predictor quality. For the
sake of simplicity, let us assume we can define a performance predictor as a function
that receives as input a user profile u (in general, it could receive other users or items

as well), the set of items J,, rated by that user, and the collection S of ratings and
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items (or any other user preference and item description information) available in the
system. Then, following the notation given used in Chapter 5, we define a neighbour

performance prediction function as:

A <y W7, ). (8.4)

The function y can be defined in different ways, for instance, by taking into ac-
count the rating distribution of each user, the number of ratings available in the sys-
tem, and the (implicit or explicit) relations made by that user with the rest of the
community. Essentially, the neighbour performance predictor is intended to estimate
the true neighbour quality metric, denoted as p(u), which is typically measured using
groundtruth information about whether the neighbour’s influence is positive. The
application of this perspective is not trivial, and requires, in particular, a definition of
what the performance of a neighbour means in this context — where no standard
metric for neighbour performance is yet available in the literature.

Once the estimated neighbour performance prediction values fi(u,) are com-
puted for all users, the quality of the prediction can be measured as presented in Sec-
tion 5.4.2, that is, either by measuring the correlation between the estimations and
the real values u(u,), or by using classification accuracy metrics such as the F-
measure. Since in this case we are interested in providing a ranking of users, this re-
lates more with the traditional query performance task, and not with query difficulty
(see Section 5.4.1), where the latter metrics are used. In other words, the neighbour

predictor quality metric is defined as the following correlation:

q(y) = corr([aCuy), -, Alu,)], [nuy), -, uCuy)D). (8.5)

Similarly to the situation in Information Retrieval, this correlation provides an
assessment of the prediction accuracy (Carmel and Yom-Tov, 2010); the higher its
(absolute) value, the higher the predictive power of y. Moreover, the sign of q(y)
represents whether the two involved variables — neighbour prediction and neighbour
quality — are directly or inversely correlated.

Besides validating any proposed predictor by checking the correlation between
predicted outcomes and objective metrics, we may further test the effectiveness of
the defined predictors by introducing and testing a dynamic variant of user-based
collaborative filtering. In this variant, the weights of neighbours are dynamically ad-
justed based on their expected effectiveness, along with the decision of which users
belong to each neighbourhood, as in the general formulation presented in Equation
(8.2). We propose to define the neighbour scoring function s(u, v,i) based on the
values computed from each neighbour performance predictors.

Hence, the basic idea of the framework presented here is to formally treat the
neighbour selection and weighting in memory-based recommendation as a perform-
ance prediction problem. The performance prediction framework provides a princi-

ple basis to analyse whether the predictors are capturing some valuable, measurable



8.3 Neighbour quality metrics and performance predictors 171

characteristic known to be useful for prediction, independently from their latter use
in a recommendation strategy. Furthermore, if a neighbour scoring function with
strong predictive power is introduced into the recommendation process and the per-
formance is not improved, then, new ways of introducing such predictor into the
rating estimation should be tested (either for selection or weighting), since we have
some confidence that this function captures interesting user’s characteristics, valuable

for recommendation.

8.3 Neighbour quality metrics and performance
predictors

The performance prediction research methodology requires a means to compare the
predicted performance with the observed performance. This comparison is typically
conducted in terms of some one-dimensional functional values, where the perform-
ance is assessed by some specific metric and the prediction can be translated to a
certain numeric value. This value quantifies the expected degree of effectiveness,
providing, thus, a relative magnitude.

Whereas in the context of performance prediction in IR, standard metrics of sys-
tem effectiveness in response to a query are used for this purpose, in the case of pre-
dicting the performance of a neighbour for recommendation we would require to use
metrics that measure how effective a neighbour is. In this section we propose several
neighbour quality metrics and performance predictors which we shall evaluate in
Section 8.4.

8.3.1 Neighbour quality metrics

The purpose of effectiveness predictors in our framework is to assess how useful
specific neighbour profiles are as a basis for predicting ratings for the target user.
Each predictor has to be contrasted to a measure of how “good” the neighbour’s
contribution is to the global community of users in the system. In contrast with
query performance prediction, where a well established array of metrics are used to
quantify query performance, to the best of our knowledge, in the literature there is
not an equivalent function for neighbours used in user-based collaborative filtering.
We therefore need to introduce and propose some sound candidate metrics.

Ideally, in the proposed framework, a quality metric should take the same argu-
ments as the predictor, and thus, if we have, for instance, a user-item predictor, we
should also be able to define a quality metric that depends on users and items. In
general, we shall focus on user-based predictors, but it would be possible to explore
item-based alternatives. Furthermore, we shall consider metrics taking neighbours as

single input, independently from which neighbourhood is involved (i.e., independ-
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ently from the target user), and which item is recommended. At the end of this sec-
tion, nonetheless, we shall introduce a neighbour quality metric suitable for the user-
user scenario, where both the target user and neighbour are taken into account.

Now, we propose three different neighbour quality metrics. The first two metrics
had a different intended use by their authors, but we found they could be useful to
evaluate how good a user is as a neighbour. The third metric was proposed by us in
(Bellogin and Castells, 2010), where the problem of neighbour performance was ex-
plicitly addressed.

Rafter et al. (2009) propose two metrics in order to examine whether the
neighbours have any influence in the recommendation accuracy. Both metrics are
based on the comparison between true ratings and a neighbour’s estimation of the
ratings, as a way to measure the direction of the neighbour estimation and the aver-
age absolute magnitude of the shift produced by this estimation. Thus, the larger the
neighbour’s influence, the better her performance, according to our definition of a

“good” neighbour. In this context we use those metrics as follows:

1 1 . .
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where § is a binary function whose output is 1 if its arguments are true, and 0 othet-
wise. Metric [y represents the absolute error deviation of a particular user, and U,
is the sign of error deviation. Note that N (v; i) denotes an inverse neighbour-
hood, which represents those users for whom v is a neighbour, and T;, denotes the
items rated by user v in the test set. We can observe how each of these metrics
represents a different method to measure how accurate the user v is as a neighbour.
In (Bellogin and Castells, 2010) we proposed a metric named neighbour good-
ness, which is defined as the difference in performance of the recommender system
when including vs. excluding the user (i.e., her ratings) from the dataset. For instance,
based on the mean average error standard metric, neighbour goodness can be instan-

tiated as:

1
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where 7y (v,1) represents the predicted rating computed using only the data in X.

This metric quantifies how much a user affects (contributes to or detracts from) the
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total amount of mean average error of the system, since it is computed in the same
way as that metric, but leaving out the user of interest — in the first term, the user is
completely omitted; in the second term, the user is only involved as a neighbour. In
this way we measure how a user contributes to the rest of users, or put informally,
how better or worse the “wotld” is in the sense of how well recommendations work
with and without the user. Hence, if the error increases when the user is removed
from the dataset, it is considered as a good neighbour.

Based on the same idea of the previous metric, we propose a user-user quality
metric that measures how one particular user affects to the error of another user

when acting as her neighbour:

e = p(u,v) = CEy\my(w) — CEy (u)
We call this metric user-neighbour goodness. It quantifies the difference in
user U’s error when neighbour v is not in the system against the error when such

neighbour is present, that is, it measures how much each neighbour contributes to

reduce the error of a particular user.

8.3.2 Neighbour performance predictors

Having formulated neighbour selection in memory-based recommendation as a task
of neighbour effectiveness prediction, and having proposed effectiveness metrics to
compare against, the core of an approach to this problem is the definition of effec-
tiveness predictors. For this purpose, similarity functions and trust models such as
those mentioned in Section 8.1 can be directly used, since in trust-aware recommen-
dation, trust metrics aim at measuring how reliable a neighbour is when introduced in
the recommendation process (O’Donovan and Smyth, 2005). Interestingly, some of
them only depend on one user (global trust metrics), and others depend on a user
and an item or another user (local trust metrics). Furthermore, other authors have
proposed different indicators for selecting good neighbours, mainly based on the
overlap between the user and her neighbour, without considering the concept of
trust.

We thus distinguish three types of neighbour performance predictors: user pre-
dictors — equivalent to the global trust metrics —, user-item predictors, and user-
user predictors — equivalent to the local trust metrics. Note that, although trust met-
rics could now be interpreted as neighbour performance predictors, the proposed
performance prediction framework let us to provide an inherent value to these met-
rics (identified as performance predictors), independently from whether they im-
prove a recommender’s performance when used for selecting or weighting in the
specific collaborative filtering algorithm. This is due to the fact that it is possible to
empirically check the quality of the prediction by analysing their correlation with re-

spect to the neighbour performance metric, prior to the integration in any collabora-
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tive filtering method. Thus, each predictor would obtain an explicit score that repre-
sents its predictive power, related to our @ priori confidence on whether such predic-
tor is capturing the neighbour’s reliability or trustworthiness.

In the following we propose an array of neighbour effectiveness prediction
methods, by adapting and integrating trust functions from the literature into our

framework, and we also propose novel prediction functions.

User Predictors

User predictors are performance predictors that only depend on the target
neighbour. When that neighbour is predicted to perform well, her assigned weight in
the user-based collaborative filtering formulation is high.

One of the first user trust metrics proposed in the literature is the profile-level
trust (O’Donovan and Smyth, 2005), which is defined as the percentage of correct
recommendations in which a user has participated as a neighbour. If we denote the

set of recommendations in which a user has been involved as
RecSet(u) = {(v,i):u € Ny (v;1)},
then the predictor is defined as follows:

|CorrectSet(v)|
|RecSet(v)| ’

i, v, i) =y =
where the definition of correct recommendations depends on a threshold €:

CorrectSet(u) = {(cy, ix) € RecSet(u):Correct(iy, u, cy; 1)}
Correct(i,u, ;1) = 6(Jr(w, i) —r(v, )| < € 1),
8(a; b) being a binary function like before whose output is a value b if the predicate
a is true, and O otherwise. That is, the recommendations considered as correct are
those in which the user was involved as a neighbour, and her ratings were close (up
to a distance of €) to the actual ratings.

A similar trust metric, called expertise trust, is presented in (Kwon et al., 2009),
where the concept of ‘correct recommendation’ is also used. In that work Kwon and
colleagues introduce a compensation value for situations in which few raters are
available. Specifically, the correct recommendation function only outputs a value of 1
when there are enough raters for a particular item (more than 10 in the paper). Oth-
erwise, an attenuation factor is introduced by dividing the number of raters by 10, in
the same way as significance weighting is introduced in Pearson’s correlation in
(Herlocker et al., 2002). More formally, the predictor is defined as:

v,(u,v,i) =yw) = Z;ez Zweu T z z Correct(j v, W; A(]))

JET, wel;
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where A(j) is 1 when item j has more than 10 raters, and U; denotes the users who
rated item i. In the same paper the authors propose another trust metric called
trustworthiness, which is equivalent to the absolute value of the similarity between
the target user’s ratings and the average ratings given by the community (denoted as
R). The authors introduce the significance weighting factor f as in (Herlocker et al.,
2002), in a way that S(v) is 1 when user v has more than 50 ratings; otherwise, f8 is
computed as the uset’s ratings divided by 50. Once the f factor is computed, the

predictor is defined as follows:

Zjeﬂv(r(v:j) —7())F() —R)
(B0 = 7))’ Sjer, 7 — R?

Hwang and Chen (2007) present a global trust metric, which we call global trust

ys(u,v,i) =y() = (v) x

deviation, defined as an average of local (user-to-user) trust deviations. This metric
makes use of the predicted rating for a user—item pair by using only one user as

neighbour:

Flu, )~ 7(u,i;v) =7(u) + (r(v, i) — F(v))
where user v is the considered neighbour. The predictor is then computed by averag-
ing the prediction error of co-rated items between each user, and normalising the

error according to the rating range R, (e.g. in a typical 1 to 5 rating scale, R, = 4):

Yawv, i) =y(w) = _r z _1 z [1 _Fwjsw) —r, )l
s |N; (W) |7, N T, | R,
WEN (v) j

S

Finally, a performance predictor inspired by the clarity score defined for query
performance (Cronen-Townsend et al., 2002) was proposed in (Bellogin and Castells,
2010), considering its adaptation to predict neighbour performance in collaborative
filtering. In the same way query clarity captures the lack of ambiguity in a query, user
clarity is expected to capture the lack of ambiguity in a user’s preferences. Thus, the
amount of uncertainty involved in a user’s profile is assumed to be a good predictor
of her performance; and the larger the following value, the lower the uncertainty and
the higher the expected performance:

D =y0) = KD IUN G = Y powiv)log, Be

weU\{v}
The probabilistic models defined in that work are based on smoothing estima-
tions and conditional probabilities over users and items. Specifically, a uniform dis-
tribution is assumed for users and items, whereas the user-user probability is defined

by an expansion through items as follows:
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POl = ) p@lDpGihy).
IETy,

Conditional probabilities are linearly smoothed with the user’s probabilities and
the maximum likelihood estimators, which finally depend on the rating given by the
user towards an item; i.e., Py (i|w) o r(u, i).

It is interesting to note that this predictor (and the probability model in which is
grounded) does not correspond with any of the adaptations of the clarity score pro-
posed in Chapter 6, since relations between users are not considered in any of the
rating-based probability models presented.

In addition to the integration of the above methods in the role of neighbour ef-
fectiveness predictors in our framework, we propose two novel predictors based on
well known quantities measured over the probability models of (Bellogin and Castells,
2010): the entropy and the mutual information. Entropy, as an information-theoretic
magnitude, measures the uncertainty associated with a probability distribution (Cover
and Thomas, 1991). Borrowing the definition of user entropy from Chapter 6, we
hypothesise that the uncertainty in the system’s knowledge about a uset’s preferences
may be a relevant signal in the effectiveness of a user as a potential neighbour, which

could be captured by the entropy of the item distribution as follows:

v vi) = y@) = =HE,) = ) p(l) log, p(jlv).
J€Ty

Note that uncertainty, measured in this way, can be due to the system’s knowl-
edge about the user’s tastes, or may come from the user herself (e.g. some users may
have strong preferences, while others may be more undecided), and both causes may
similarly affect the neighbour effectiveness. In either case the predictor can be inter-
preted as the lack of ambiguity in a user profile.

The second information-theoretic magnitude we propose to use over the prob-
ability models presented above is the mutual information. To be precise, the mutual
information is a quantity computed between two random variables that measure the
mutual dependence of the variables, or, in other terms, the reduction in uncertainty
about one variable provided some knowledge about the other (Cover and Thomas,
1991). Here, we propose to adapt this concept, and compute the mutual informa-
tion between the neighbour and the rest of the community in order to assess the
uncertainty involved in the neighbour’s preferences. For this purpose, instead of
computing the mutual information over all the events in the sample space for both
variables (users), we fix one of them (for the current neighbour), and move along the
other dimension:

Ye(u,v,i) =y(w) = MI(v; U\ {u}) = z p(w|v) logzm-
W p(w)p(w)
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User-1tem Predictors

User-item predictors consist of performance predictors that depend on a user-item
pair. More specifically, they are defined upon the active neighbour and the target
item. This type of predictor is more difficult to apply because of its higher vulnerabil-
ity to data sparsity. In a bi-dimensional user-item input space less observations can be
associated to each input data point, whereby the confidence on the predictor out-
come is lower, as it can be biased to outliers or unusual users or items.

A local trust metric based on the target user and item is proposed in
(O’Donovan and Smyth, 2005). This metric is called item-level trust, and aims to
discriminate reliable neighbours depending on the current item, since the same user
may be more trustworthy for predicting ratings for certain items than for others. The
formulation of this predictor can be seen as a particularisation of ¥4, but constraining

the recommendation set only to the pairs in which the current item is involved:

l{(ck, i) € CorrectSet(v): i, = i}|
[{(ck, ix) € RecSet(v): i), = i}|

Ys(u,v,i) =y(,i) =

User-User Predictors

The user-user predictors take as inputs two users: the active user and the current
neighbour. User-user predictors based on local trust metrics have been studied fur-
ther than user-item predictors in the literature, since the former are able to represent
how much a user can be trusted by another, and let for different interpretations of
the relation between users. These metrics have been often researched in the scope of
social networks, and the users’ explicit links in this context (Ziegler and Lausen,
2004; Massa and Avesani, 2007a), along with several trust metrics based on ratings, as
we shall show below. In this way, although social-based metrics could be smoothly
integrated in our framework, here we focus on a complementary view on trust where
predictors are defined based on ratings. We leave other type of predictors as future
work.

A first simple neighbour reliability criterion one may consider is the amount of
common experience with the target user, that is, the amount of information upon
which the two users can be compared. If we define “user experience” as the set of
items the user has interacted with, we may define a predictor embodying this princi-

ple as:

Yo(u, v, 1) = y(w,v) = |7, N T,l.
We shall refer to this predictor as user overlap. This predictor will serve as a ba-
sis for subsequent predictors, since most of them will depend on the items rated by
both users. For instance, it has a clear use in assessing the reliability of the inter-user

similarity assessments, which has been applied in the literature under a more practi-
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cal, ad-hoc manner. Specifically, Herlocker et al. (2002) proposed the introduction of
a weight on the similarity function, where the latter is devalued when it has been
based on a small number of co-rated items. We may formulate Herlocker’s signifi-
cance weighting predictor as follows:

|7, N 7,1

Yiow, v, i) = y(u,v) = — if |7, N 7,| < ng; 1 otherwise,
H

where ny is the minimum number of co-rated items that two users should have in
common in order to avoid similarity penalisation. A value of ny = 50 was proved
empirically to work effectively.

A variation of the previous scheme was proposed in (McLaughlin and Herlocker,

2004), to which we shall refer as McLaughlin’s significance weighting:

max (|7, N T,|,ny.)

Y, i) =yv) =
Npyc

This predictor is aimed to be equivalent to the Herlocker’s significance weighting
(Y10) formulation when ny, = ny. However, we note that y;9 and ;1 represent
different concepts, and are not fully equivalent. For instance, as noted in (Ma et al.,
2007), Y11 may return values larger than 1 when |7, N J,| > ny, while y;, by defi-

nition, always returns a value in the (0,1] interval.

Alternatively, the following variant can be drawn from (Ma et al., 2007), which is
just a more compact reformulation of yyq:
min(|7, N 7|, ny)
ny '

)/12 (ul vl l) = )/(u: U) =

A more elaborated predictor was proposed in (Weng et al., 2006). The rationale
behind such predictor is to consider two situations depending whether or not user u
takes into account the recommendation made by neighbour v. In this sense trustwor-
thiness is defined as the reduction in the proportion of incorrect predictions of going
from the latter situation to the former. The definition of this predictor, denoted as

user’s trustworthiness, is the following:

1 n(u, v; x,v)?
D Rl S
Yis(w,v, ) =y, v) RE = Son(e v x)? IR| 0.2 WG v 2 n(uw,v; x,7)

In this formulation |R]| represents the number of allowed rating values in the
system (e.g. in a 1 to 5 rating scale, |[R| = 5), the function n(u, v; x,y) represents
the number of co-rated items on which ¥’s ratings have the value y while ©’s ratings
are x, that is, n(u, v; x,y) = |{(u,-, x)} 0 {(v,, ¥)}| when each rating tuple is repre-
sented as (@, b, ¢), given a user @, an item b, and a rating value c. In the same way,

n(u,v; x,r) = Xyn(u,v;x,y) represents all the co-rated items between u and v
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rated with any rating value by user v, and, analogously, n(u, v; -, y) = X, n(u,v; x,y).
In this case, the assumed hypothesis is that trust is one’s expectation of other’s com-
petence in reducing its uncertainty in predicting new ratings.

Finally, a user-user predictor can be defined based on the global trust deviation
predictor defined above (y,). In fact, Hwang and Chen (2007) define trust deviation

by ignoring the average along users as follows:

, 1 17 (u, j; v) — r(u,j)l
Yis(u,v, ) =y(w,v) = 77l Z [1 - R
wWT e, r

This predictor identifies effective neighbours mainly based on how many trustworthy

(understood as “accurate”) recommendations a user has received from another.

8.4 Experimental results

In this section we report experiments in which the proposed neighbour effectiveness
prediction framework is tested. First, we check the existing correlations between the
user-based predictors defined in Section 8.3.2 and the neighbour performance met-
rics proposed in Section 8.3.1, as a direct test of their predictive power. For the user-
item predictors we cannot analyse their correlation because we have no neighbour
performance metric depending on both the target user and an item available.

Moreover, we test the usefulness of the predictors to enhance the final perform-
ance of memory-based algorithms, by using the predictors’ values in the selection and
weighting of neighbours, that is, by taking the predictors as the scoring function in
Equation (8.2).

Our experiments were conducted on two versions of the Moviel.ens dataset,
namely the 100K and 1M versions, described in Section 3.4.1 and Appendix A.1. For
the user-based collaborative filtering method, we used Pearson’s correlation as the
similarity measure between users, and a varying neighbourhood size (k), which is a

parameter with respect to which the results were examined.

8.4.1 Correlation analysis

We analyse the correlation between neighbour quality metrics and neighbour per-
formance predictors in terms of the Pearson and Spearman’s correlation metrics.
Correlation provides a measure of the predictive power of the neighbour effective-
ness prediction approaches: the higher the (absolute) correlation value, the better the
predictor estimates the positive neighbour effect on the recommendation accuracy.
The sign of the correlation coefficient represents whether the two involved variables
— neighbour quality metric and neighbour performance predictor — are directly or

inversely correlated.
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Absolute error deviation | Neighbour goodness | Sign of error
() ts (+) 2 (+)
Clarity -0.21 +0.17 +0.14
Entropy -0.18 +0.18 +0.12
Expertise -0.62 +0.03 +0.25
Global Trust Deviation -0.35 -0.01 +0.08
Mutual Information -0.20 +0.17 +0.12
Profile Level Trust +0.62 -0.04 -0.24
Trustworthiness -0.21 +0.03 +0.20

Table 8.1. Pearson’s correlation between the proposed neighbour quality metrics and
neighbour performance predictors in the MovieLens 100K dataset. Next to the metric
name, an indication about the sign of the metric — direct(+) or inverse(-) — is included.
Not significant values for a p-value of 0. 05 are denoted with an asterisk (*).

Absolute error deviation | Neighbour goodness | Sign of error
t () ps (+) B (+)
Clarity -0.30 +0.16 +0.21
Entropy -0.22 +0.17 +0.15
Expertise -0.65 +0.02 +0.30
Global trust deviation -0.38 -0.03 +0.11
Mutual Information -0.25 +0.16 +0.17
Profile Level Trust +0.65 -0.02 -0.30
Trustworthiness -0.24 +0.03 +0.25

Table 8.2. Spearman’s correlation between quality metrics and performance predictors
in the MovieLens 100K dataset.

Table 8.1 and Table 8.2 show the correlation values obtained on the Moviel.ens
100K dataset for the user-based predictors. We associate a sign to each quality metric
indicating whether the metric is direct (denoted as ‘+’) or inverse (denoted with ‘-’),
according to the expected sign of the correlation with the predictor, i.e., a metric is
direct if the higher its value, the better the true neighbour performance. We can ob-
serve that the Spearman’s correlation values are consistent, but slightly higher than
Pearson’s, thus evidencing a non-linear relationship between the quality metrics and
the performance predictors.

The absolute error deviation (M) metric presents higher values when the
neighbour’s prediction is less accurate, being thus an inverse neighbour metric. The
other two metrics, sign of error (l;) and neighbour goodness (l3), are, by definition,
direct neighbour metrics, since the former indicates how many times a recommenda-
tion from the neighbour has been made in the right direction, whereas the latter
represents the change in error between excluding a particular user in the neighbour-
hood or including her, and thus, the larger this error, the “better” neighbour this

user.
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Absolute error deviation | Neighbour goodness | Sign of error
t (5) us (+) Ho (+)
Clarity -0.14 +0.40 +0.02
Entropy -0.07 +0.39 -0.08
Expertise -0.95 -0.06 +0.70
Global Trust Deviation -0.55 -0.24 +0.36
Mutual Information -0.17 +0.30 +0.13
Profile Level Trust +0.83 +0.04 -0.55
Trustworthiness -0.27 +0.03 +0.36

Table 8.3. Pearson’s correlation between quality metrics and performance predictors in
the MovieLens 1M dataset. All the values are significant for a p-value of 0.05.

Absolute error deviation | Neighbour goodness | Sign of error
t () s (+) Ha (+)
Clarity -0.16 +0.35 +0.04
Entropy -0.03 +0.37 -0.10
Expertise -0.94 -0.09 +0.69
Global trust deviation -0.54 -0.25 +0.39
Mutual information -0.16 +0.31 +0.04
Profile level trust +0.94 +0.09 -0.69
Trustworthiness -0.25 +0.02 +0.37

Table 8.4. Spearman’s correlation between quality metrics and predictors in the
MovieLens 1M dataset.

We can observe in Table 8.1 that, except for some of the predictors that obtain
very low absolute values (< 0.10), the four quality metrics are consistent with each
other. This consistency is evidenced by the way the predictors correlate with the dif-
ferent metrics: some of the predictors obtain the correct correlations in every situa-
tion, that is, positive correlation with direct metrics and negative correlation with the
inverse metric (like the clarity predictor), while other predictors obtain opposite val-
ues for all the metrics, that is, positive correlations with the inverse metric and nega-
tive correlations with direct metrics (such as the profile level trust predictor).

Also in Table 8.1 and Table 8.2 we see that each metric captures a different no-
tion of neighbour quality because they show different correlation values with respect
to the predictors. In this way, although consistent correlation results are obtained for
direct and inverse metrics, each of them is actually detecting a different nuance of
how a neighbour should behave in order to perform well.

Table 8.3 and Table 8.4 show the correlation values obtained on the Movie-Lens
1M dataset. We can observe that the trend in correlation is very similar to the behav-
ior observed on the 100K dataset, and thus, similar conclusions can be drawn from
it. There are, however, some changes in the absolute values of the correlation scores

for some combinations of performance predictor and quality metric. For instance,
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the clarity predictor and the neighbour goodness metric obtain larger values in this
dataset, while the correlation between entropy and absolute error deviation is smaller.

It is important to note that the number of points used to compute the correla-
tion values is different in the two datasets; there are less than 1,000 points in
MovieLens 100K (with 943 users), and more than 6,000 points in MovieLens 1M
dataset. This difference affects the significance of the correlation results, as already
described in Section 5.4.2, where we observed how the confidence test for a Pear-
son’s (and Spearman’s) correlation depends on the size of the sample, and thus, the
significance of a correlation value may change for different sample sizes.

In our experiments, for MovieLens 100K, the correlations are significant for a p-
value of 0.05 when r > 0.05, and in the 1M dataset when r > 0.02. Hence, in Ta-
ble 8.1, there is only one non-significant correlation value (denoted with an asterisk),
whereas in Table 8.3, all the results are statistically significant.

Analysing in more detail the reported results for both datasets, we observe that
the profile level trust predictor consistently obtains direct correlation values with
inverse metrics, whereas inverse cottrelation values are obtained with direct metrics.
This predictor seems to give higher scores to neighbours with larger deviations in
their accuracy error, which would result on bad performance prediction because
these values are not in the same direction than the performance metrics. The exper-
tise and global trust deviation predictor obtain strong inverse correlations with the
absolute error deviation metric, although their correlations with respect to the
neighbour goodness metric are negligible, especially for the first predictor, in both
datasets. At the other end of the spectrum, the clarity, entropy, and mutual informa-
tion predictors obtain strong correlation values with the neighbour goodness, and
moderate correlations with the rest of metrics, which make these predictors good
candidates for successful neighbour performance predictors. Finally, the trustworthi-
ness predictor obtains a significant amount of correlation with respect to the absolute
error deviation and sign of error metrics, although its correlation with respect to the
neighbour goodness is very low. This predictor thus seems to be useful on estimating
how accurate the neighbour may be in terms of the error in a user basis, but probably
not as a global metric.

Table 8.5 shows the correlations obtained for user-user neighbour predictors and
the proposed user-neighbour clarity metric. Due to the high dimensionality of the
vectors involved in this computation, we have considered only those users that have
at least one item in common. Despite this fact, correlations are almost negligible,
except for the Mclaughlin’s significance weighting predictor and the Spearman’s
coefficient, which evidences a non-linear relation between this predictor and the met-
ric. In the next section we shall show that this function is one of the best performing
predictors among the evaluated neighbour scoring functions. This result confirms the

usefulness of the proposed neighbour performance metric since it is able to discrimi-
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Movielens 100K Movielens 1M
Pearson Spearman Pearson Spearman
Herlocker 0.02 0.03 0.01 0.02
McLaughlin 0.01 0.12 0.01 0.11
Trust Deviation 0.01 0.01 0.01 0.01
User Overlap 0.02 0.03 0.02 0.02
User’s Trustworthiness -0.02 -0.02 -0.01 -0.01

Table 8.5. Correlation between the user-neighbour goodness and user-user predictors
in the two datasets evaluated.

nate which neighbour performance predictors are able to capture interesting proper-
ties between the user and her neighbours.

In summary, we have observed that most of the performance predictors agree
with respect to the different performance metrics, and in general, the correlations
computed between neighbour quality metrics and neighbour performance predictors

are statistically significant.

8.4.2 Performance analysis

The results reported in the previous section show that some of the studied predictors
have the ability to capture neighbour performance, and because of that we hypothe-
sise that they could be used to improve the accuracy of a recommendation model.
This hypothesis, nonetheless, has to be checked since the metric against which we
measure the neighbour goodness is not the same as the final recommendation per-
formance metric we aim to optimise. With the experiments we report next we aim to
confirm the usefulness of the proposed predictors, the validity of the proposed met-
rics as useful references to assess the power of the predictive methods, and the use-
fulness of the overall framework as a unified approach to enhance neighbourhood-
based collaborative filtering.

In order to achieve this we test the integration of the neighbour predictors into a
neighbour selection and weighting scheme for user-based collaborative filtering, as
described in Section 8.2.1. Besides testing the effectiveness of the predictors, this
experiment provides for observing to what extent the correlations obtained in the
previous section correspond with improvements in the final performance of those
predictors.

We provide recommendation accuracy and precision results on the MovieLens
1M dataset. Those obtained on the MovieLLens 100K dataset are not reported here
since they had similar trends. Figure 8.1 and Figure 8.2 show the Root Mean Square
Error (RMSE) of the Resnick’s collaborative filtering adaptation proposed in Equa-
tion (8.2) when used for different neighbour selection and weighting approaches. The

curves at the top of the figures represent the values obtained when neighbour per-
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Neighbour weighting

(a) Predictor as similarity (b) Harmonic combination
1.25 1.25

1.20 1.20
1.15 \ 1.15
1.10 1.10
1.00 \ 1.00

0.95 \‘ 0.95

0.90 T T T T T T T | 0.90 T T T T T T T 1
10 20 50 100 200 1000 2000 4000 6000 10 20 50 100 200 1000 2000 4000 600C

Neighbourhood size Neighbourhood size

RMSE
s

RMSE
5

Neighbour selection

(c) Predictor as filter (d) Filter and harmonic combination
1.40

e ___o

1.35

1.30

0.90 T T T T

0.90 T T T T T T T ] T
10 20 50 100 200 1000 2000 4000 6000 10 20 50 100 200 1000 2000 4000 6000

Neighbourhood size Neighbourhood size

Resnick —a&— Entropy ==0==Clarity —— Expertise

--------- Global Trust Deviation —C— Mutual Information --®--Profile Level Trust -—+--Trustworthiness

Figure 8.1. Performance comparison for user-based predictors and different neighbourhood
sizes.

formance predictors are used for neighbour weighting, that is, when the standard

neighbour selection strategy is used (f¢9" = fonagh in Equation (8.2)). Note that
since the lines represent errors, the lower these values, the better the performance.
Besides, Figure 8.3 presents the results found with the precision at 10 (P@10) rank-
ing metric of a subset of the proposed methods, where in this case the higher the
values, the better the performance.

A different aggregation function is used in each approach, depending on whether
the harmonic mean between the predictor score and the similarity value (function
f99 = £,%99 on the right), or the projection function (£%99 = £,"99 on the left)

are used, in the latter case in order to ignore the similarity. The curves at the bottom
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flnelg

of the figures show the neighbour selection approach (f¢¥9" = in Equation

(8.2)) along with the same neighbour weighting functions described above (i.e., fzagg
on the right and f4agg on the left). The rest of the aggregation functions, such as
average (flagg) and product (]%agg), were also evaluated for neighbour selection and
weighting, but provided results equivalent to those of the harmonic mean. For this
reason, they have been omitted in the figures to avoid cluttering them. We believe
this equivalence may be due to the normalisation factor included in the collaborative
filtering formulation, since it would cancel out the weights obtained by the harmonic,

average, and product functions in the same way.
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RMSE RMSE
Resnick 1.174 Resnick 1.174
Clarity 1.181 Herlocker 1.175
Entropy 1.175 Item-level Trust 1.264
Expertise 1.171 McLaughlin 1.174
Global Trust Deviation | 1.173 Trust Deviation 1.173
Mutual Information 1.180 User Overlap 1.175
Profile Level Trust 1.177 User’s Trustworthiness | 1.175
Trustworthiness 1.175

Table 8.6. Detail of the accuracy of baseline vs. recommendation using neighbour
weighting; here, performance predictors are used as similarity scores (50 neighbours).

RMSE RMSE
Resnick 1.174 Resnick 1.174
Clarity 1.172 Herlocker 1.156
Entropy 1.189 Item-level Trust 1.843
Expertise 1.139 McLaughlin 0.581
Global Trust Deviation | 1.158 Trust Deviation 1.168
Mutual Information 1.171 User Overlap 1.146
Profile Level Trust 1.310 User’s Trustworthiness | 1.174
Trustworthiness 1.162

Table 8.7. Detail of the accuracy of baseline vs recommendation using neighbour
selection; here, performance predictors are used for filtering (50 neighbours).

Figure 8.1 shows the accuracy results when only user-based neighbour predictors
are evaluated. We observe that, independently from the neighbourhood size, using
performance predictors as similarity scores does not lead to large differences with

respect to the baseline. These results are compatible with those presented in (Weng
et al., 2006), where the improvement in RMSE is not very high (AMAE < 0.05 in

that work). For the sake of clarity, in Table 8.6 and Table 8.7 we show the error val-
ues for a horizontal cut of the left curves; specifically, when the neighbourhood size
is 50. We can observe that some predictors do improve Resnick’s accuracy. Regard-
ing the use of the harmonic mean as aggregation function (curves on the right), simi-
lar results are obtained except for very large neighbourhood sizes, for which some of
the performance predictors produce worse results than the baseline, probably due to
the amount of noise created by considering too many neighbours.

The curves at the bottom of the figures represent the accuracy results for
neighbour selection strategies. In this case some of the predictors lead to worse per-
formance than the baseline, particularly the profile level trust (y;). This situation is
consistent with the correlations observed in the previous section, since this predictor

obtained inverse correlations with the different metrics, i.e., direct correlation values
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Figure 8.3. Performance comparison using ranking-based metrics for both user and user-
user neighbour predictors using the AR and 1R evaluation methodologies.

with inverse metrics, and inverse values with direct metrics. Moreover, as predicted
by the correlation analysis, trustworthiness (y3), mutual information (yg), and clarity
(¥s) result in some of the best performing recommenders (with strong correlations),
as shown in the figures and in Table 8.7, along with expertise (¥,) and global trust
deviation (), which obtained more moderated correlation values.

In Figure 8.2 we can see how user-item and user-user neighbour predictors affect
the performance of collaborative filtering recommenders. The curves in the top show
that most of the predictors obtain a similar performance to that of the baseline, ex-
cept for the item-level trust (Yg), the performance of which is much worse than Res-
nick’s. Table 8.6 shows the specific error values for these recommenders. It is inter-
esting to note that the performance of this predictor is drastically improved when
using the harmonic mean as the aggregation function (shown on the right side of the
figure). Similarly to user-based neighbour predictors (Figure 8.1), some of the user-
item and user-user predictors decrease their accuracy with large neighbourhoods; in
this case, user’s trustworthiness (y;13) and McLaughlin’s significance weighting (y15)

are the more representative examples.
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A different conclusion results when neighbour selection is analysed (curves at
the bottom). Two of the predictors are characterised by a much better (McLaughlin’s
significance weighting, ¥;,) or worse (item-level trust, yg) final performance, inde-
pendently from the weighting aggregation function. Table 8.7 shows the specific er-
ror values obtained for each of these predictors. It is interesting how the McLaugh-
lin’s predictor, despite its inability to boost good neighbours (see top figures), seems
to be very useful for neighbour selection. This effect, nonetheless, is attenuated when
the neighbourhood increases, since in that situation, selection methods have to deal
with too many users in each neighbourhood. We believe the reason why this predic-
tor is very good for neighbour selection is because it gives higher scores to those
neighbours that have more items in common with the target user, and thus the con-
fidence in the computation of the similarity values between the neighbour and the
target user is higher. It is worth noting that, to the best of our knowledge, this func-
tion has never been used for neighbour selection, since its original motivation was to
penalise the similarity value whenever it has been based on a small number of co-
rated items. However, by plugging this function into our framework, and measuring
its predictive power for user-neighbour performance, a novel application naturally
emerges and provides very good results.

Finally, in Figure 8.3 we can observe that a similar trend is found with P@10 for
both user-based predictors (top curves), and user-item and user-user predictors (bot-
tom curves). In the figure we only present the results of the neighbour selection and
weighting approaches for less than 200 neighbours, since the results of the rest of the
approaches and neighbourhoods are very similar. It is worth noting that the two
methodologies evaluated — AR and 1R — agree on the order of the best and worst
performing dynamic approaches, although as already observed in the previous chap-
ter, the absolute performance values obtained with each methodology may be very
different — e.g. the maximum P@10 value with 1R is 0.1, which is reached by several
recommendation methods with the AR methodology. More interestingly, these re-
sults show consistency between the performance of some dynamic approaches using
error- and ranking-based metrics, since the best and worst predictors according to
RMSE and P@10 are the same; McLaughlin’s significance weighting and item-level
trust, respectively. Moreover, the entropy and clarity user-based predictors show
worse performance in small neighbourhoods, but outperform the baseline signifi-
cantly in larger neighbourhoods, something different to what we observed in the
previous experiment with error-based metrics.

In summary, we have been able to validate both the proposed user-user
neighbour performance metrics, and the different evaluated user-user neighbour per-
formance predictors. We have obtained positive results when this type of predictors
has been introduced and compared against the baseline in the different aggregation

strategies and configurations, and these results are consistent with the correlations
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obtained between the predictors and the performance metrics. In particular,
McLaughlin’s significance weighting obtains an improvement up to 55% in both
accuracy (i.e., error decrease) and precision (i.e., precision improvement) when this
predictor is used to select the neighbours which will further contribute to the rating
prediction. Besides, the (Spearman’s) correlation for this predictor is positive and
strong, in contrast to the values obtained for the rest of user-user predictors, which
did not improve the accuracy of the baseline. In this context, a possible drawback of
the conducted analysis is that we have not been able to define neighbour perform-
ance metrics based on user-item pairs, and thus the user-item neighbour performance
predictors are out of the scope of the developed correlation analysis. Nevertheless,
the obtained results showed that the only user-item neighbour performance predictor
defined here — the item-level trust — is not able to outperform the baseline recom-
mender. We believe this fact, which is in contradiction with what was reported in
(O’Donovan and Smyth, 2005), may be caused by the different variables taking place
in our evaluation, such as the dataset (Moviel.ens 1M instead of Moviel.ens 100K),
the neighbourhood size (not specified in the original paper), and the several aggrega-

tion functions and combinations used across our experiments.

8.4.3 Discussion

The reported experiment results provide empiric evidence of the usefulness of the
proposed framework, and the specific proposed predictors, as an effective approach
to enhance the accuracy of memory-based collaborative filtering. As described in the
preceding sections, the methodology comprises two steps, one in which the predic-
tive power of neighbour predictors is assessed, and one in which the predictors are
introduced in the collaborative filtering scheme to enhance the effectiveness of the
latter. Our experiments confirm a strong correlation for some of the predictors —
both user predictors and user-user predictors —, and this has been found to corre-
spond with final accuracy enhancements in the recommendation strategy: the predic-
tors that obtain strong direct correlations with the performance metrics are the best
performing dynamic strategies; the profile level trust predictor, which obtains inverse
correlation values with respect to the neighbour performance metrics, is the worst
performing dynamic strategy.

In light of these results, it could be further investigated whether the actual corre-
lation values between neighbour performance predictors and neighbour performance
metrics could be used to infer how each predictor should be incorporated into a
memory-based collaborative filtering method as a neighbour scoring function, since
there is no obvious link between the ranking of the best performing scoring func-
tions and the strength of their corresponding correlations. As a starting point, only
the sign of the correlation could be considered, using either the raw neighbour pre-

dictor score (for positive correlations) or its inverse (for negative values). Then, this
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rationale could be further elaborated and evaluated in order to check whether the
performance improvements are consistent.

Research on finding functions with strong correlation power with respect to
neighbour performance metrics could be an interesting area by itself, since it could
have different final applications. We have experimented here with variations in
neighbour selection and weighting for user-based collaborative filtering, but those
predictors (functions) could also be used, for instance, for active learning (Elahi,
2011), or for providing more meaningful explanations (Marx et al., 2010), depending

ot based on the predicted performance of a particular user’s neighbours.

8.5 Conclusions

We have shown in this chapter that performance prediction does not only serve to
aggregate entire recommender systems, but also to aggregate subcomponents of re-
commender algorithms — in this case, neighbour related terms in collaborative filter-
ing. We propose a theoretical framework for neighbour selection and weighting in
user-based recommender systems, which is based on a performance prediction ap-
proach drawn from the query performance methodology of the Information Retrieval
field. By viewing the neighbourhood-based collaborative filtering rating prediction
task as a case of dynamic output aggregation, our approach places user-based col-
laborative filtering in a more general frame, linking to the principles underlying the
formation of ensemble recommenders, and rank aggregation in Information Re-
trieval. By doing so, it is possible to draw concepts and techniques from these areas,
and vice versa. Our study thus provides a comparison of different state-of-the-art
rating-based trust metrics and other neighbour scoring techniques, interpreted as
neighbour performance predictors, and evaluated under this new angle. The frame-
work lets an objective analysis of the predictive power of several neighbour scoring
functions, integrating different notions of neighbour performance into a unified view.
Thus, the proposed methodology discriminates which neighbour scoring functions are
more effective in predicting the goodness of a neighbour, and thus identifies which
weighting functions are more effective in a user-based collaborative filtering algo-
rithm.

Drawing from different state-of-the-art neighbour scoring functions — cast as
user, user-user, and user-item neighbour performance predictors —, we have reported
several experiments in order to, first, check the predictive power of these functions,
and second, validate them by comparing the final performance of neighbour-scoring
powered memory-based strategies with that of the standard collaborative filtering
algorithm. We also evaluate different ways to introduce these functions in the rating
prediction formulation, namely for neighbour weighting, neighbour selection, and

combinations thereof. In this context, methods where neighbour scoring functions
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were integrated outperform the baseline for different values of neighbourhood size
and predictor type.

We have also proposed several neighbour performance metrics that capture dif-
ferent notions of neighbour quality. The evaluated performance predictors show
consistent correlations with respect to these metrics, and some of them present par-
ticularly strong correlations. Interestingly, a correspondence is confirmed between
the correlation analysis and the final performance results, in the sense that the corre-
lation values obtained between neighbour performance predictors and neighbour
performance metrics anticipate which predictors will perform better when intro-
duced in a memory-based collaborative filtering algorithm.

This research opens up the possibility to several research lines for the integration
of other types of predictors and trust metrics into our framework. For instance, pet-
formance predictors defined upon social data, such as those defined in Chapter 6
based on uset’s trust network, could be smoothly integrated into our framework and
analysed in the future. Furthermore, alternative neighbour performance metrics may
be defined to check the predictive power of user-user and user-item predictors.
These metrics may help better understand which characteristics of the neighbour
performance such predictors are capturing, although based on a smaller amount of
information since in rating-based systems users only rate items once. In particular,
our framework would allow for different interpretations of the user’s performance,
by modelling different neighbour performance metrics, which may be oriented to
accuracy (using error metrics as in this chapter), ranking precision, or even alternative
metrics such as diversity, coverage and serendipity (Shani and Gunawardana, 2011).
Additionally, other predictors based on item information could be defined similar to
those proposed in (Weng et al., 2006; Ma et al., 2007), and easily incorporated into

our framework using item-based algorithms instead of user-based.
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