

Part IV

IV Applications

It is through science that we prove, but

through intuition that we discover.

Jules Henri Poincaré

Chapter 7

7 Dynamic recommender

ensembles

Hybrid recommender systems – and recommender ensembles as a particular case –

have become a very popular strategy for making recommendations, since they help

alleviate most of the shortcomings of the individual recommenders combined. They

have, however, specific problems such as the need of deciding which information

sources should be exploited, which recommenders should exploit each of these

sources, and how the combination of recommenders should be configured.

In this chapter we propose a framework to decide how dynamic hybridisation

should be balanced, by estimating its expected improvements on individual recom-

mendations. Furthermore, we provide some requirements to decide when to build

such hybridisation. Within the spectrum of hybrid recommendation approaches, we

focus on those that linearly combine the output from several recommenders, and use

different weights for generating a particular aggregation of the individual recommen-

dations. In the standard approach, these weights are typically fixed regardless of the

user for which recommendations are produced, or the recommended items. In this

context we investigate the use of performance predictors to assign those weights

dynamically depending on the target user or item. We evaluate our approach using

the predictors proposed in the previous chapter. The results obtained show that the

generated dynamic ensembles are capable of outperforming their static counterparts.

Furthermore, they also show that dynamic ensembles can be improved if predictors

with stronger predictive power (higher correlation values as observed in the previous

chapter) are used.

In Section 7.1 we present and formulate the research problem of recommenda-

tion hybridisation. Next, in Section 7.2 we describe our proposed performance pre-

diction framework for dynamic hybrid recommendation. Section 7.3 describes the

experiments conducted and provide an overall discussion of the obtained results.

Finally, in Section 7.4 some conclusions are given.

142 Chapter 7. Dynamic recommender ensembles

7.1 Problem statement

As described in Chapter 2, hybrid recommenders are built by the combination of

different recommendation methods. In the simplest and typical case, hybrid recom-

mendations are produced by weighting and summing the utility values output by

some recommenders, forming a so called recommender ensemble where an arbitrary

number of algorithms of different kinds (content-based, user-based collaborative

filtering, item-based collaborative filtering, social-based, demographics-based, etc.)

can be combined.

Researchers in Machine Learning have known for long that the combination of

classifiers usually achieves better results than each method separately, which is also

true in Recommender Systems – the Netflix prize has been a paradigmatic example

of this, where all the top classified teams used large recommender ensembles. We

focus on weighted hybrid approaches, as an option that begets a simple and general

formulation of the dynamic balance of the combined methods by just setting the

weights of each method in the hybrid combination. This approach can be ex-

pressed as follows:

 (7.1)

In this chapter we investigate whether the performance predictors proposed in

the previous chapter – where we have already found degrees of correlation between

the ambiguity (clarity) of the user‟s preferences and the accuracy of the system‟s rec-

ommendations – can be useful for hybridisation. Specifically, we aim to use these

predictors to build dynamic hybrid recommenders in such a way that the weight

 depends not only on the recommender but also on the current user , or poten-

tially other variables such as the item or other available context information. We

propose to specify such weights according to the ambiguity of the user‟s preferences

or item‟s patterns, that is, we aim to use the performance predictors defined in the

Chapter 6 to estimate those weights.

In the next section we propose a framework to perform dynamic hybrid recom-

mendation where we use recommendation performance predictors and we analyse

different requirements related to the adaptation of such predictors to produce

weights in a hybrid recommender combination. After that, three different experi-

ments are presented, where the predictors proposed in Chapter 6 are used as dy-

namic weights in the combination.

7.2 A performance prediction framework for ensemble recommendation 143

7.2 A performance prediction framework for

ensemble recommendation

Let us simplify Equation (7.1) to the case where only two recommenders and

are used. In this situation, only one weighting factor is needed (because of the con-

straint for the weights to sum to one) and we would have the following formulation:

 (7.2)

In this case, since the weight is the same for every user and item we refer

to such a recommender as a static hybrid. However, a single value of the combination

parameter is not generally the optimal for each (user, item) pair. Therefore, instead

of Equation (7.2), we may want to consider:

 (7.3)

where is the combination parameter which may depend on the current user, item,

or both, and probably also depending on the recommender . In this case we refer

to such method as a dynamic hybrid.

A suitable assignment of the parameters is a difficult task. In our ap-

proach, however, we propose to use the performance prediction methodology devel-

oped in the previous chapter, whenever the predictors show some correlation with

the performance of a recommender. In this way, since we have some evidence that

the performance predictors are able to estimate in advance the performance of a user

in a user or item basis, we can use such estimations to weight accordingly the ratings

predicted for a given user and item pair by each recommender.

In this context, it is not granted in general to obtain improvements whenever a

performance predictor is used in a dynamic ensemble. We have to devise a set of

conditions in which such predictors may be used; moreover, the ensemble problem

has to be well defined, which is not always true as we shall show. Hence, we define a

framework for dynamic hybrid recommendation based on recommendation per-

formance predictors, characterised by some prerequisites, a specific normalisation

strategy, and a weighting distribution among recommenders. In this framework, the

weights are obtained by transformations of the values obtained by a performance

predictor, in a similar way as the work presented in (Yom-Tov et al., 2005b) on rank

aggregation in Information Retrieval, but in the context of Recommender Systems.

7.2.1 Requirements

A first requirement to use a performance predictor for weighting the recommenders

of an ensemble, is that it should correlate positively with the performance of not all

144 Chapter 7. Dynamic recommender ensembles

but some of such recommenders, or with the performance of all the recommenders

but to different degrees. If a performance predictor correlates positively with all the

recommenders in an ensemble to a similar extent, it does not provide a discriminative

criteria to weight the recommenders any differently.

A predictor should be used to assign weights to those recommenders of the en-

semble with which it correlates for performance. These assignments also alter the

weights of the uncorrelated recommenders, since the weights of all the recommend-

ers in the ensemble need to sum to 1. However, this should not affect the overall

performance contribution of these recommenders, as the resulting weight should

correspond randomly with their performance (hence the unpredicted recommenders‟

weight can be expected to change for good as much as for bad, whereas the weight

of predicted recommenders should change more often for good).

Figure 7.1 shows which correlations can be considered valid according to the

statements presented above, for an ensemble with two recommenders R1 and R2.

The horizontal axis depicts the correlation with respect R1 and the vertical axis with

R2. Hence, the dotted area represents those situations where a predictor‟s correlation

for R1 is higher than for R2, and thus, the predictor should weight R1. Analogously,

the striped area represents the candidate situations where the predictor should weight

R2. Furthermore, when correlations with R1 and R2 are too similar (diagonal) no

weighting assignment is preferred, and thus, if a predictor lies in the white area it

should be used for weighting neither R1 nor R2 for the reasons described above.

Another requirement is that a recommender should not have an always superior

or always inferior performance to those of the rest of the ensemble‟s recommenders.

Otherwise the problem is distorted by the fact that the best weight is the one that

gets closest to 0 for the recommenders that systematically perform worse (or 1 for

the best), regardless of how excellent or terribly bad is the applied strategy, or the

predictive power of the approach, since a biased predictor (either towards 0 or 1,

depending on which recommender (the worst or the best) such predictor is weight-

ing) would obtain very good results. This issue is recognised in (van Setten, 2005)

where the author presents the situation where all recommenders produce item sug-

gestions that are all too low or all too high with respect to the true user‟s preferences,

and then the recommender ensemble is less accurate than the best individual recom-

mender. In summary, underperforming recommenders are useless in an ensemble to

begin with, or equivalently, the over performing one(s) should be used alone, and

thus, there is no true weighting problem to solve.

7.2 A performance prediction framework for ensemble recommendation 145

7.2.2 Predictor normalisation

The output of a predictor is required to correlate with the performance of a recom-

mender, but it is not necessarily by itself a good value for weighting the recom-

mender in an ensemble, as already pointed out in (Hauff et al., 2009). In order to

generate appropriate weights, the predictor output should be transformed by a

monotonic function into values on a comparable scale, such as simply . We shall

call this transformation “normalisation.”

In this context, different transformations can be applied. Mapping the minimum

value to 0 and the maximum to 1 is the simplest transformation, also known as min-

max score normalisation (Renda and Straccia, 2003). Another common approach is

to map (named rank-sim by Renda and Straccia, 2003) the predictor scores onto

evenly distributed points in the , preserving their order. Min-max preserves the

original predictor score distribution, while rank-sim maps it onto a uniform distribu-

tion. There is no obvious a priori reason to decide which case is preferable, to pre-

serve the original distribution, or to equalise it somehow, and in fact more complex

normalisation techniques could be used, like the one proposed in (Fernández et al.,

2006b).

7.2.3 Weight distribution among recommenders

Once the predictor output has been normalised, it still needs a final adjustment to

ensure, among other things, that the sum of the weights assigned to the ensemble‟s

Figure 7.1. Valid predictor correlation regions for a recommender ensemble of size 2.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

co
rr

el
a

ti
o

n
 w

rt
 R

2

correlation wrt R1

candidates for weighting R1 candidates for weighting R2

146 Chapter 7. Dynamic recommender ensembles

recommenders is 1. How this step is done depends, mainly, on how many recom-

menders are weighted by predictors, more specifically on whether all or only some of

the combined recommenders are treated by performance predictors. Hence, we con-

sider two options for the distribution of the weights among the recommenders:

a) Only some of the recommenders in the ensemble are given dynamic weights.

The rest of the recommenders receive the same weight, ensuring the weights of

the ensemble‟s recommenders sum up to 1. This can be done in different ways:

 Assigning a weight of 0.5 to the unpredicted recommenders, and dividing

all weights by the total sum. This strategy is named as fixed weight or FW.

 Assigning the dynamic weights to the corresponding recommenders, if we

assume that their sum is ≤ 1, then we divide 1 minus the sum of dynamic

coefficients equally among the unpredicted recommenders. We denote

this strategy as one minus or OM. If the sum is greater than 1, we have to

divide by the total sum and normalise it by the total number of predictors.

b) All recommenders are weighted using a specific predictor per recommender.

This is not easy to grant in general, as there may not be predictors for all the re-

commenders combined. In case this option is taken, the weights can be simply

normalised by the sum of weights.

Furthermore, if the output of each recommender has a different range, it would

be necessary to apply an additional normalisation step to the recommender scores.

The most usual strategies are the ones described in the previous section: score or

rank normalisation (Renda and Straccia, 2003).

7.3 Experimental results

We next report experiments assessing the usefulness of the proposed predictors for

adjusting the weights of a recommender ensemble, once their predictive power has

been confirmed against the recommenders‟ actual performance, as reported in the

previous chapter. We identify the combinations of recommenders that meet the con-

ditions stated in the previous section for the dynamic combination problem to make

sense and select the performance predictors to be applied based on their observed

correlation with the performance of the recommenders (as reported in Section 6.5),

and the requirements proposed in this chapter, i.e., that one recommender in the

ensemble should have a positive correlation with the predictor, and the other should

have an opposite or near neutral correlation. Then, we compare dynamic against

static ensembles.

Among the different ways to set up static ensembles of two recommenders we

take as baselines a) the best performing one in test, and b) the best theoretical static

one without prior information, i.e., one with . Intuitively, an even weighting

7.3 Experimental results 147

is the optimum over the – theoretical – set of all recommender ensembles: if say

 was the best weight for the combination of two recommenders R1+R2,

then should be fairly bad for the permutation R2+R1 (

being best). If we assume that performance loss is convex with respect to –

it can be seen that otherwise the hybrid may underperform its constituents –, then

 is the best compromise for R1+R2 and R2+R1. Since the set of all possible

ensembles includes all the permutations of the combined recommenders, is

the best (theoretical) overall weight.

We also take as “skylines” (upper bound baselines) an oracle performance pre-

dictor consisting of the performance of the recommender itself. We shall refer to this

method as „perfect correlation‟, where the true performance of both recommenders

is used as a weight for hybridisation (hence, such predictor would have a correlation

of 1.0 with the recommender‟s performance), whereas we shall refer to it as „PC-OM‟

and „PC-FW‟ when the performance of only one recommender is used (the same

recommender being weighted by the predictors) along with the one minus or the

fixed weight strategy for weight distribution (see Section 7.2.3). In all cases we apply

a rank normalisation technique on the recommenders‟ scores.

In the subsequent sections we present three experiments conducted to evaluate

the proposed performance predictors. In the first experiment we use the rating-based

predictors and test both user- and item-based performance predictors presented in

Section 6.2.1. We use the MovieLens dataset, and compare the results with four of

the evaluation methodologies presented in Chapter 4, i.e., AR, 1R, P1R, and U1R. In

the second experiment we use predictors based on log data. We evaluate the predic-

tors presented in Section 6.2.2 on the two versions of the Last.fm dataset using the

1R methodology. Finally, in the third experiment we test the social-based predictors

presented in Section 6.3 on the CAMRa dataset and the AR methodology.

7.3.1 Dynamic recommender ensembles on rating data

As a first instantiation of our framework for building dynamic recommender ensem-

bles described in Section 7.2, we first have to identify the recommenders to combine,

that is: one of the recommenders should have a positive correlation with the predic-

tor, while the other should have an opposite or near neutral correlation; besides, they

should not perform very differently.

According to the correlation results presented in Section 6.5.1, we identify the

pairs of recommenders presented in Table 7.1 as combinations meeting the condi-

tions stated above. The first three ensembles are combinations of a collaborative

filtering with a content-based recommendation method. The last ensemble combines

a user-based collaborative filtering method with a non-personalised method, and the

rest of the ensembles are combinations of two collaborative filtering methods. Al-

148 Chapter 7. Dynamic recommender ensembles

though some of these combinations have not been typical in the recommender sys-

tems literature, in our study they serve as a proof of concept to check whether the

proposed dynamic recommender ensemble framework is useful in general or not. We

refer the reader to Appendix A.2 for more details about the implementation of the

recommenders.

The first two rows of Table 7.2, Table 7.3, Table 7.4, and Table 7.5 show the

P@10 values for each of the combined recommenders obtained using the AR, 1R,

U1R, and P1R methodologies, respectively. In Appendix A.5.1 we report results with

other evaluation metrics. Note that, as mentioned in Chapter 4, in the AR methodol-

ogy the absolute values are not meaningful since they depend on the amount of rele-

vant information in test; on the other hand, for the 1R related methodologies (i.e.,

1R, U1R, and P1R) the precision at 10 metric has an upper bound on 0.1, since there

is only one relevant item in each ranking.

In these tables we may observe that among the six considered ensembles, there

are cases where the first recommender (with respect to which the performance is

predicted) performs better, worse, or similarly to the second recommender. This

situation changes accross methodologies and provides for a comparison of the result-

ing effects when the stated requirements are not met. Analogously, the predictors‟

correlations may change depending on the evaluation methodology followed, as ob-

served in Section 6.5.1. Specifically, the recommenders presented in Table 7.1 where

chosen according to the correlation results obtained for the AR methodology, and

we may observe that some of the conditions stated above do not hold for some of

the selected cases, for instance, correlation between most of the predictors and kNN

recommender is negligible in the 1R, U1R, and P1R methodologies, in contrast with

the results found for the AR methodology.

In the tables we may also observe that the best static ensemble is different de-

pending on the evaluation methodology and the combined recommenders. The per-

formance values of the best static ensembles, on the other hand, show an interesting

situation that does depend on the specific considered ensemble, namely, whether the

(best) static ensembles outperform or not both recommenders. For the AR method-

ology (Table 7.2), in the case of HRU1, HRU3, HRU5, and HRU6, the best static

 R1 R2

HRU1 TFL1 CB

HRU2 TFL2 CB

HRU3 kNN CB

HRU4 kNN IB

HRU5 kNN pLSA

HRU6 kNN ItemPop

Table 7.1. Selected recommenders for building dynamic ensemble using user performance

predictors that exploit rating-based information (MovieLens dataset).

7.3 Experimental results 149

outperforms both recommenders, but this is not observed for HRU2 nor for HRU4.

In the latter scenarios, thus, it seems hybridisation would not be so useful for combi-

nation.

Additionally, regarding the normalisation of the predictor‟s output we evaluate

two normalisation techniques: rank and score normalisation. Since there is no prior

information about which normalisation technique would provide better results, we

test both, and report the best results in each situation, which are usually achieved by

the rank-sim normalisation technique. Finally, the weigh strategy is also included as a

parameter of the experiments. Since we only have a predictor for one of the recom-

menders in the ensemble (denoted as R1), as we explained in Section 7.2.3, we may

weight the unpredicted recommender as one minus the predictor value (OM), or as

0.5 and then divide the weights of the two recommenders by the sum of weights

(FW).

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0024 0.0696 0.0307 0.0307 0.0307 0.0307

R2 (=0.0) 0.0163 0.0163 0.0163 0.0001 0.1454 0.0897

Baseline (=0.5) 0.0106 0.0473 0.0363 0.0008 0.1142 0.0808

Best static

(best)

0.0180

(0.1)

0.0668

(0.9)

0.0392

(0.9)

0.0078

(0.9)

0.1475

(0.1)

0.0937

(0.1)

Perfect correlation 0.0189 0.0732 0.0401 0.0311 0.1469 0.0980

PC-OM 0.0176 0.0721 0.0434 0.0091 0.1489 0.0958

PC-FW 0.0177 0.0541 0.0379 0.0025 0.1478 0.0958

Entropy-OM 0.0110

 0.0685

 0.0388

 0.0069

 0.1126

 0.0791

ItemSimple-OM 0.0170

 0.0685

 0.0390

 0.0072

 0.1496

 0.0919

ItemUser-OM 0.0172

 0.0680

 0.0386

 0.0068

 0.1513

 0.0924

RatUser-OM 0.0177

 0.0687

 0.0393

 0.0072

 0.1535

 0.0931

RatItem-OM 0.0178

 0.0674

 0.0389

 0.0066

 0.1542

 0.0928

IRUser-OM 0.0169

 0.0668

 0.0387

 0.0066

 0.1487

 0.0922

IRItem-OM 0.0172

 0.0655

 0.0378

 0.0061

 0.1500

 0.0918

IRUserItem-OM 0.0170

 0.0665

 0.0388

 0.0066

 0.1498

 0.0916

Entropy-FW 0.0111

 0.0528

 0.0369

 0.0027

 0.1156

 0.0807

ItemSimple-FW 0.0156

 0.0529

 0.0369

 0.0027

 0.1433

 0.0908

ItemUser-FW 0.0166

 0.0529

 0.0368

 0.0028

 0.1468

 0.0915

RatUser-FW 0.0170

 0.0528

 0.0370

 0.0028

 0.1498

 0.0919

RatItem-FW 0.0170

 0.0529

 0.0369

 0.0027

 0.1499

 0.0918

IRUser-FW 0.0161

 0.0526

 0.0371

 0.0029

 0.1420

 0.0912

IRItem-FW 0.0163

 0.0525

 0.0367

 0.0027

 0.1459

 0.0909

IRUserItem-FW 0.0164

 0.0527

 0.0372

 0.0028

 0.1452

 0.0908

Table 7.2. Dynamic ensemble performance values (P@10) using AR methodology and user

predictors (MovieLens dataset). Improvements over the baseline are in bold, the best result

for each column is underlined. The value of each dynamic hybrid is marked with
 ,

where and indicate, respectively, statistical difference with respect to the best static

(upper,) and with respect to the baseline (lower,). Moreover, and indicate,

respectively, significant and non-significant improvements over the corresponding

recommender. A similar convention with and indicates values below the recommender

performance. Statistical significance is established by paired Wilcoxon in all cases.

150 Chapter 7. Dynamic recommender ensembles

Table 7.2 shows the results obtained following the AR methodology. We may

observe how, except in three cases, dynamic ensembles outperform the baseline.

Interestingly, for HRU5, the best performing method is not the one obtained with

the „perfect correlation‟ approach, as we may expect, but with our dynamic ensem-

bles based on the user clarity performance predictors. This is due to the fact that the

corresponding predictor for the first recommender (P@10 values for kNN) also has

a strong correlation with the performance of the second recommender (pLSA), and

thus, it does not satisfy the requirement that the correlation values should not be too

similar for both recommenders.

Table 7.3 shows the results obtained with the 1R methodology. Note that in this

case the correlations were consistently lower than those obtained with the AR meth-

odology. In particular, this is emphasised in the results of the dynamic ensemble

HRU1, which do not outperform the baseline for almost any predictor. This can be

explained with the results reported in Table 6.9, where the TFL1 recommender ob-

tains a near-zero correlation, and thus, the correlation requirement of our framework

is not satisfied. Specifically, this fact highlights the importance of the strength in the

correlation between the predictor and the recommender performance, as stated in

Section 7.2.1. Furthermore, we may observe in the table that for two combinations

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0221 0.0690 0.0437 0.0437 0.0437 0.0437

R2 (=0.0) 0.0221 0.0221 0.0221 0.0074 0.0836 0.0649

Baseline (=0.5) 0.0338 0.0536 0.0469 0.0327 0.0749 0.0658

Best static

(best)

0.0338

 (0.4)

0.0720

 (0.9)

0.0514

 (0.8)

0.0455

 (0.9)

0.0856

 (0.1)

0.0696

 (0.2)

Perfect correlation 0.0370 0.0715 0.0553 0.0458 0.0840 0.0723

PC-OM 0.0358 0.0683 0.0507 0.0353 0.0811 0.0709

PC-FW 0.0343 0.0592 0.0482 0.0344 0.0803 0.0699

Entropy-OM 0.0332

 0.0662

 0.0472

 0.0382

 0.0709

 0.0626

ItemSimple-OM 0.0304

 0.0666

 0.0473

 0.0384

 0.0844

 0.0681

ItemUser-OM 0.0305

 0.0660

 0.0471

 0.0381

 0.0847

 0.0680

RatUser-OM 0.0307

 0.0666

 0.0478

 0.0386

 0.0850

 0.0680

RatItem-OM 0.0305

 0.0663

 0.0475

 0.0385

 0.0849

 0.0678

IRUser-OM 0.0304

 0.0655

 0.0470

 0.0381

 0.0839

 0.0675

IRItem-OM 0.0298

 0.0644

 0.0457

 0.0370

 0.0839

 0.0671

IRUserItem-OM 0.0305

 0.0655

 0.0471

 0.0381

 0.0841

 0.0674

Entropy-FW 0.0339

 0.0594

 0.0472

 0.0356

 0.0686

 0.0650

ItemSimple-FW 0.0321

 0.0596

 0.0473

 0.0358

 0.0837

 0.0684

ItemUser-FW 0.0320

 0.0594

 0.0471

 0.0356

 0.0843

 0.0683

RatUser-FW 0.0321

 0.0596

 0.0475

 0.0359

 0.0848

 0.0684

RatItem-FW 0.0321

 0.0595

 0.0473

 0.0358

 0.0847

 0.0684

IRUser-FW 0.0320

 0.0592

 0.0471

 0.0356

 0.0834

 0.0680

IRItem-FW 0.0318

 0.0588

 0.0465

 0.0349

 0.0835

 0.0674

IRUserItem-FW 0.0320

 0.0592

 0.0471

 0.0356

 0.0837

 0.0678

Table 7.3. Dynamic ensemble performance values (P@10) using 1R methodology and user

predictors (MovieLens dataset).

7.3 Experimental results 151

(HRU2 and HRU5) the best performance results are not obtained by dynamic ap-

proaches, but by the best static approaches in contrast with what we found for the

AR methodology. This situation is different to the one obtained when we evaluate

using MAP@10 (see Appendix A.4.1), where the best results are always obtained by

dynamic ensembles.

Table 7.4 and Table 7.5 show the performance values obtained with the unbiased

methodologies proposed in Chapter 4, that is, U1R and P1R. Following the U1R

methodology (Table 7.4) we obtain similar results to those obtained in the 1R meth-

odology except for HRU6. In contrast, with the P1R methodology (Table 7.5) our

framework does not show improvements over any baseline. We may see that the

„perfect correlation‟ methods are able to obtain better, although very close, values

than those of the best static ensemble. This means that there is room for improve-

ment in this methodology, and that the performance of the dynamic recommender

ensembles could be improved if better performance predictors were found.

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0294 0.0524 0.0381 0.0381 0.0381 0.0381

R2 (=0.0) 0.0223 0.0223 0.0223 0.0068 0.0718 0.0406

Baseline (=0.5) 0.0345 0.0440 0.0396 0.0283 0.0639 0.0493

Best static

(best)

0.0351

 (0.6)

0.0536

 (0.9)

0.0424

 (0.7)

0.0384

 (0.9)

0.0732

 (0.1)

0.0493

 (0.5)

Perfect correlation 0.0389 0.0552 0.0493 0.0396 0.0742 0.0559

PC-OM 0.0373 0.0485 0.0471 0.0332 0.0732 0.0548

PC-FW 0.0355 0.0459 0.0429 0.0307 0.0722 0.0535

Entropy-OM 0.0345
 0.0518

 0.0404

 0.0337

 0.0615

 0.0471

ItemSimple-OM 0.0333

 0.0519

 0.0403

 0.0339

 0.0723

 0.0444

ItemUser-OM 0.0334

 0.0517

 0.0403

 0.0336

 0.0726

 0.0438

RatUser-OM 0.0335

 0.0521

 0.0410

 0.0341

 0.0728

 0.0435

RatItem-OM 0.0334

 0.0516

 0.0406

 0.0341

 0.0726

 0.0434

IRUser-OM 0.0333

 0.0511

 0.0401

 0.0336

 0.0718

 0.0440

IRItem-OM 0.0326

 0.0504

 0.0388

 0.0325

 0.0714

 0.0430

IRUserItem-OM 0.0334

 0.0511

 0.0401

 0.0336

 0.0719

 0.0437

Entropy-FW 0.0347

 0.0472

 0.0402

 0.0308

 0.0636

 0.0486

ItemSimple-FW 0.0342

 0.0473

 0.0402

 0.0309

 0.0720

 0.0467

ItemUser-FW 0.0342

 0.0471

 0.0401

 0.0308

 0.0724

 0.0467

RatUser-FW 0.0343

 0.0474

 0.0405

 0.0310

 0.0727

 0.0469

RatItem-FW 0.0342

 0.0472

 0.0403

 0.0309

 0.0725

 0.0469

IRUser-FW 0.0341

 0.0470

 0.0401

 0.0308

 0.0714

 0.0469

IRItem-FW 0.0338

 0.0467

 0.0393

 0.0302

 0.0712

 0.0464

IRUserItem-FW 0.0341

 0.0471

 0.0401

 0.0308

 0.0716

 0.0469

Table 7.4. Dynamic ensemble performance values (P@10) using the U1R methodology and

user predictors (MovieLens dataset)

152 Chapter 7. Dynamic recommender ensembles

In summary, the results show that our methods significantly outperform

static ensembles for different recommender combinations in most of the

evaluation methodologies. Moreover, in most cases our methods also achieve the

best results for each ensemble, let aside the performance of the oracle performance

prediction (perfect correlation) and best static approaches, which use groundtruth

(test) information, differently to the clarity- and entropy-based performance predic-

tors.

Nevertheless, we observe that in those cases where the dynamic ensembles do

not perform better than the static ensembles, the best static approaches use values of

 close to . We hypothesise that our framework may be biased towards favouring

those ensembles whose recommender combination is highly unbalanced. Interest-

ingly, although the predictors only weight one of the recommenders (not always the

better performing one) a dynamic ensemble is usually able to find the optimal com-

bination in the unbalanced cases. In particular, this could help to answer why our

dynamic ensembles underperform static approaches for the U1R and P1R method-

ologies, since the best static in these cases seem to be often very close to .

 HRU1 HRU2 HRU3 HRU4 HRU5 HRU6

R1 (=1.0) 0.0203 0.0348 0.0265 0.0265 0.0265 0.0265

R2 (=0.0) 0.0197 0.0197 0.0197 0.0208 0.0604 0.0282

Baseline (=0.5) 0.0470 0.0579 0.0539 0.0269 0.0763 0.0560

Best static

(best)

0.0470

 (0.5)

0.0593

 (0.6)

0.0541

 (0.6)

0.0278

 (0.7)

0.0796

 (0.4)

0.0560

 (0.5)

Perfect correlation 0.0464 0.0579 0.0546 0.0314 0.0767 0.0564

PC-OM 0.0425 0.0554 0.0528 0.0296 0.0746 0.0537

PC-FW 0.0429 0.0542 0.0504 0.0282 0.0764 0.0522

Entropy-OM 0.0431

 0.0564

 0.0502

 0.0261

 0.0698

 0.0521

ItemSimple-OM 0.0358

 0.0509

 0.0429

 0.0261

 0.0689

 0.0441

ItemUser-OM 0.0361

 0.0512

 0.0431

 0.0261

 0.0675

 0.0444

RatUser-OM 0.0362

 0.0514

 0.0436

 0.0263

 0.0663

 0.0446

RatItem-OM 0.0361

 0.0511

 0.0432

 0.0262

 0.0661

 0.0444

IRUser-OM 0.0365

 0.0513

 0.0435

 0.0263

 0.0687

 0.0447

IRItem-OM 0.0357

 0.0504

 0.0421

 0.0257

 0.0669

 0.0439

IRUserItem-OM 0.0365

 0.0513

 0.0434

 0.0263

 0.0675

 0.0447

Entropy-FW 0.0457

 0.0577

 0.0524

 0.0265

 0.0745

 0.0546

ItemSimple-FW 0.0410

 0.0540

 0.0475

 0.0266

 0.0720

 0.0498

ItemUser-FW 0.0409

 0.0538

 0.0473

 0.0265

 0.0706

 0.0497

RatUser-FW 0.0410

 0.0540

 0.0477

 0.0267

 0.0691

 0.0499

RatItem-FW 0.0411

 0.0541

 0.0476

 0.0266

 0.0688

 0.0499

IRUser-FW 0.0410

 0.0538

 0.0474

 0.0266

 0.0721

 0.0496

IRItem-FW 0.0406

 0.0534

 0.0467

 0.0263

 0.0699

 0.0491

IRUserItem-FW 0.0409

 0.0538

 0.0474

 0.0266

 0.0706

 0.0496

Table 7.5. Dynamic ensemble performance values (P@10) using the P1R methodology and

user predictors (MovieLens dataset).

7.3 Experimental results 153

Using item-based predictors

As we noted in Section 6.5.2, item-based predictors could also be valuable since they

also obtain high correlations with respect to item perfomance. Table 7.6 shows the

selected recommenders that satisfy the correlation requirements with item predictors.

Table 7.7, Table 7.8, and Table 7.9 show the results obtained when these recom-

mender combinations are evaluated and compared against dynamic versions (using

our proposed item predictors), and using the 1R, U1R, and uuU1R methodologies.

In this case, ensemble predictions are computed by means of Equation (7.3) with

values only depending on the current item, that is, .

When measuring the performance of dynamic ensembles that use item-based

performance predictors, we do not compute the perfect correlation predictors be-

cause we do not have a standard metric for item performance. Apart from that, the

 R1 R2

HRI1 pLSA CB

HRI2 pLSA kNN

HRI3 ItemPop CB

HRI4 ItemPop kNN

Table 7.6. Selected recommenders for building dynamic ensembles using item predictors that

exploit rating data (MovieLens dataset).

 HRI1 HRI2 HRI3 HRI4

R1 (=1.0) 0.0836 0.0836 0.0649 0.0649

R2 (=0.0) 0.0221 0.0437 0.0221 0.0437

Baseline (=0.5) 0.0909 0.0924 0.0886 0.0907

Best static

(best)

0.0909

(0.5)

0.0924

(0.5)

0.0886

(0.5)

0.0907

(0.5)

Entropy-OM 0.0708

 0.0858

 0.0684

 0.0831

UserSimple-OM 0.0761

 0.0905

 0.0723

 0.0837

UserItem-OM 0.0776

 0.0903

 0.0749

 0.0843

RatItem-OM 0.0751

 0.0893

 0.0712

 0.0824

RatUser-OM 0.0759

 0.0892

 0.0674

 0.0789

URItem-OM 0.0776

 0.0911

 0.0797

 0.0885

URUser-OM 0.0781

 0.0906

 0.0721

 0.0820

URItemUser-OM 0.0777

 0.0909

 0.0777

 0.0869

Entropy-FW 0.0798

 0.0923

 0.0771

 0.0895

UserSimple-FW 0.0946

 0.0979

 0.0916

 0.0949

UserItem-FW 0.0949

 0.0980

 0.0920

 0.0950

RatItem-FW 0.0944

 0.0979

 0.0913

 0.0948

RatUser-FW 0.0946

 0.0978

 0.0908

 0.0942

URItem-FW 0.0940

 0.0981

 0.0923

 0.0958

URUser-FW 0.0946

 0.0978

 0.0912

 0.0945

URItemUser-FW 0.0944

 0.0980

 0.0921

 0.0954

Table 7.7. Dynamic ensemble performance values (P@10) using 1R methodology with item

predictors (MovieLens dataset).

154 Chapter 7. Dynamic recommender ensembles

rest of the experimental settings is the same as those described above for dynamic

hybrids with user-based performance predictors.

Table 7.7 shows the results obtained by using item-based predictors and the 1R

methodology. We may observe that if the predictors are weighted using the FW

strategy, dynamic ensembles outperform static combinations in every situation, ex-

cept for the Entropy predictor. It is interesting to note that, differently to user-based

predictors, the dynamic ensembles are able to outperform the best static ensemble

even when they are close to the baseline with . The reader may compare Ta-

ble 7.4 and Table 7.7 to observe these differences.

In Table 7.8, where the methodology U1R is used, a very similar situation occurs,

although not all dynamic ensembles outperform the static approach with the FW

strategy. Specifically, the dynamic hybrid weighted by the URItem clarity predictor

clearly obtains better performance than the rest of the dynamic and static ensembles,

in particular the HRI3 and HRI4 combinations.

Finally, the performance results found for the uuU1R methodology are pre-

sented in Table 7.9, in which the test ratings – i.e., the users – are uniformly distrib-

uted over the items, items previously uniformly distributed in the test (like in the

U1R methodology). In this experiment, the performance of the dynamic ensemble is

much better than in the previous experiments, since all the rating-based item pre-

dictors (except for the Entropy predictor) outperform the static baseline no

matter the weighting strategy in three out of four recommender combinations.

 HRI1 HRI2 HRI3 HRI4

R1 (=1.0) 0.0718 0.0718 0.0406 0.0406

R2 (=0.0) 0.0223 0.0381 0.0223 0.0381

Baseline (=0.5) 0.0764 0.0812 0.0630 0.0689

Best static

(best)

0.0764

(0.5)

0.0812

(0.5)

0.0630

(0.5)

0.0689

(0.5)

Entropy-OM 0.0571

 0.0652

 0.0435

 0.0508

UserSimple-OM 0.0657

 0.0716

 0.0399

 0.0450

UserItem-OM 0.0671

 0.0721

 0.0425

 0.0462

RatItem-OM 0.0645

 0.0699

 0.0392

 0.0435

RatUser-OM 0.0620

 0.0671

 0.0335

 0.0382

URItem-OM 0.0705

 0.0757

 0.0496

 0.0532

URUser-OM 0.0650

 0.0699

 0.0372

 0.0414

URItemUser-OM 0.0690

 0.0741

 0.0462

 0.0500

Entropy-FW 0.0668

 0.0757

 0.0518

 0.0595

UserSimple-FW 0.0840

 0.0886

 0.0601

 0.0658

UserItem-FW 0.0844

 0.0887

 0.0609

 0.0663

RatItem-FW 0.0839

 0.0883

 0.0598

 0.0653

RatUser-FW 0.0831

 0.0876

 0.0573

 0.0630

URItem-FW 0.0851

 0.0897

 0.0642

 0.0698

URUser-FW 0.0836

 0.0881

 0.0585

 0.0642

URItemUser-FW 0.0848

 0.0893

 0.0625

 0.0680

Table 7.8. Dynamic ensemble performance values (P@10) using U1R methodology with item

predictors (MovieLens dataset).

7.3 Experimental results 155

In the other combination (HRI3) the best strategy is FW, the same as with the other

evaluation methodologies.

7.3.2 Dynamic recommender ensembles on log data

In this section we present experiments in which log-based predictors are used to dy-

namically weight an ensemble‟s recommenders. As with rating-based information, in

this case we first have to select suitable recommenders to combine according to the

requirements established in our framework. Hence, we choose the combinations

HL1, HL2 and HL3 presented in Table 7.10, where, as before, the performance pre-

dictors weight the recommender denoted as R1.

The Last.fm dataset contains timestamped log-based information. As noted in

Chapter 4, for efficiency reasons, we only use the 1R methodology in this dataset.

Table 7.11 shows the results obtained with a temporal split of the data, and Table

7.12 shows the results obtained with a random split (five-fold) of the data.

 R1 R2

HL1 kNN CB

HL2 kNN ItemPop

HL3 pLSA kNN

Table 7.10. Selected recommenders for building dynamic ensembles using performance

predictors that exploit log-based information (Last.fm dataset).

 HRI1 HRI2 HRI3 HRI4

R1 (=1.0) 0.0536 0.0536 0.0225 0.0225

R2 (=0.0) 0.0198 0.0275 0.0198 0.0275

Baseline (=0.5) 0.0374 0.0440 0.0239 0.0256

Best static

(best)

0.0491

(0.9)

0.0502

(0.9)

0.0239

(0.6)

0.0271

(0.2)

Entropy-OM 0.0324

 0.0385

 0.0236

 0.0280

UserSimple-OM 0.0510

 0.0548

 0.0237

 0.0282

UserItem-OM 0.0514

 0.0547

 0.0236

 0.0280

RatItem-OM 0.0516

 0.0547

 0.0237

 0.0281

RatUser-OM 0.0523

 0.0551

 0.0237

 0.0282

URItem-OM 0.0498

 0.0536

 0.0234

 0.0280

URUser-OM 0.0518

 0.0551

 0.0234

 0.0279

URItemUser-OM 0.0505

 0.0542

 0.0235

 0.0280

Entropy-FW 0.0344

 0.0410

 0.0241

 0.0275

UserSimple-FW 0.0435

 0.0503

 0.0244

 0.0276

UserItem-FW 0.0435

 0.0501

 0.0245

 0.0275

RatItem-FW 0.0436

 0.0504

 0.0244

 0.0275

RatUser-FW 0.0440

 0.0509

 0.0245

 0.0276

URItem-FW 0.0429

 0.0494

 0.0244

 0.0273

URUser-FW 0.0438

 0.0506

 0.0245

 0.0274

URItemUser-FW 0.0432

 0.0498

 0.0245

 0.0274

Table 7.9. Dynamic ensemble performance values (P@10) using uuU1R methodology with

item predictors (MovieLens dataset).

156 Chapter 7. Dynamic recommender ensembles

We can see that the results of both tables are analogous. The dynamic ensem-

bles weighted by the log-based performance predictors outperform the base-

line static ensemble in all cases, except with the Autocorrelation predictor.

This result is consistent with the correlations presented in Table 6.14 and Table 6.15,

where autocorrelation obtained the lowest (absolute) correlation value for the kNN

recommender on both versions of the dataset. Regarding the pLSA recommender (in

the combination HL3), the Autocorrelation and TimeSimple predictors obtain com-

 HL1 HL2 HL3

R1 (=1.0) 0.0603 0.0603 0.0926

R2 (=0.0) 0.0916 0.0797 0.0603

Baseline (=0.5) 0.0852 0.0755 0.0820

Best static

(best)

0.0914

(0.2)

0.0812

(0.1)

0.0925

(0.9)

Perfect correlation 0.0890 0.0783 0.0863

PC-OM 0.0869 0.0771 0.0851

PC-FW 0.0849 0.0751 0.0826

ItemSimple-OM 0.0904

 0.0804

 0.0901

Autocorrelation-OM 0.0815

 0.0722

 0.0781

TimeSimple-OM 0.0905

 0.0789

 0.0898

ItemTime-OM 0.0906

 0.0804

 0.0902

ItemPriorTime-OM 0.0885

 0.0778

 0.0863

ItemSimple-FW 0.0903

 0.0802

 0.0891

Autocorrelation-FW 0.0842

 0.0746

 0.0809

TimeSimple-FW 0.0901

 0.0785

 0.0884

ItemTime-FW 0.0904

 0.0800

 0.0891

ItemPriorTime-FW 0.0883

 0.0775

 0.0855

Table 7.11. Dynamic ensemble performance values (P@10) using the 1R methodology with

the log-based user predictors (Last.fm, temporal split).

 HL1 HL2 HL3

R1 (=1.0) 0.0204 0.0204 0.0836

R2 (=0.0) 0.0828 0.0767 0.0204

Baseline (=0.5) 0.0764 0.0643 0.0704

Best static

(best)

0.0818

(0.2)

0.0767

(0.1)

0.0837

(0.9)

Perfect correlation 0.0818 0.0760 0.0829

PC-OM 0.0816 0.0755 0.0823

PC-FW 0.0815 0.0745 0.0811

ItemSimple-OM 0.0799

 0.0730

 0.0771

Autocorrelation-OM 0.0717

 0.0596

 0.0686

TimeSimple-OM 0.0814

 0.0762

 0.0518

ItemTime-OM 0.0806

 0.0734

 0.0761

ItemPriorTime-OM 0.0770

 0.0658

 0.0743

ItemSimple-FW 0.0804

 0.0726

 0.0739

Autocorrelation-FW 0.0756

 0.0631

 0.0697

TimeSimple-FW 0.0814

 0.0753

 0.0579

ItemTime-FW 0.0808

 0.0728

 0.0732

ItemPriorTime-FW 0.0783

 0.0671

 0.0719

Table 7.12. Dynamic ensemble performance values (P@10) using the 1R methodology with

log-based user predictors (Last.fm, five-fold random split).

7.3 Experimental results 157

parable correlations with the combined recommenders, yet the performance of the

corresponding dynamic ensembles is very different, thus suggesting that, although we

have found a dependence between the predictors‟ power in terms of correlation, and

their effectiveness in weighting hybrids, this is not a strict necessary condition to

obtain improvements over the static ensembles.

The best performance values were achieved either by single recommenders or by

the best static ensembles. When the best results are obtained by single recommenders

emphasises the fact that no hybridisation is required for that combination (like in

HL1 and HL3 for the temporal split, and HL1 and HL2 for the random split). In the

other case, when the best results are achieved by the best static ensembles, it may

restrict the usefulness of our approach, although our proposed dynamic ensembles

significantly outperform the baseline static ensembles for some predictors such as

TimeSimple and ItemSimple. We have to recall that the best static ensembles are in

fact optimised using the test set, which is clearly not a fair comparison. The results of

the perfect correlation ensembles in the random split are always better than those

obtained by the performance predictors, confirming that predictors with stronger

correlations should obtain better performance results when used for dynamic en-

sembles.

7.3.3 Dynamic recommender ensembles on social data

In the third experiment we exploit the social information available in the CAMRa

dataset to combine collaborative and social filtering recommenders using social-

based performance predictors. Table 7.13 shows the recommender combinations

selected based on the correlations obtained in Section 6.5.4. Here, we present 4 en-

sembles where the two social filtering recommenders, Personal and PureSocial, are

combined with two collaborative filtering recommenders, pLSA and kNN. We saw

in Section 6.5.4 that most of the social-based predictors obtained higher correlations

with the social filtering recommenders, and lower or negligible correlations with the

collaborative filtering recommenders, at least for the social version of the dataset

(Table 6.16). The situation for the collaborative-social version was not so clear, but

for the sake of coherence, we use the same set of ensembles in both versions of the

dataset.

 R1 R2

HS1 Personal pLSA

HS2 Personal kNN

HS3 PureSocial pLSA

HS4 PureSocial kNN

Table 7.13. Selected recommenders for building dynamic ensembles using social-based

user predictors (CAMRa dataset).

158 Chapter 7. Dynamic recommender ensembles

As we mentioned in Section 6.5.4, due to the lack of coverage of the social filter-

ing recommenders, the only methodology that provides sensible results is the AR

methodology. In this section we present the results obtained using this methodology

on the two available versions of the CAMRa dataset: social and collaborative-social.

Table 7.14 shows the results obtained on the social version of the CAMRa data-

set. We see that only for one out of the four recommender combinations, the dy-

namic ensembles consistently outperform the baseline static ensemble. However, it is

interesting to note that the best value is always achieved by the perfect correlation

ensemble, which means that further improvements could be possible if we were able

to find predictors with stronger correlations.

In the collaborative-social version of the dataset (Table 7.15) the results are simi-

lar, except that now for HS2, the best result is obtained by the best static ensemble.

Moreover, a larger number of dynamic ensembles outperform the baseline static en-

semble HS3, whereas at least one dynamic ensemble outperforms the baseline HS1,

which is a better result than the one shown in the previous Table 7.14. We hypothe-

sise this is because on this version of the dataset the individual recommenders display

a more similar performance to each other (compare the differences between R1 and

R2 in Table 7.14 and Table 7.15).

Furthermore, some of the correlations obtained for the CAMRa collaborative

 HS1 HS2 HS3 HS4

R1 (=1.0) 0.1732 0.1732 0.1760 0.1760

R2 (=0.0) 0.1110 0.0473 0.1110 0.0473

Baseline (=0.5) 0.1813 0.1821 0.2006 0.1929

Best static

(best)

0.1842

(0.7)

0.1899

(0.8)

0.2012

(0.4)

0.1952

(0.6)

Perfect correlation 0.2018 0.1929 0.2089 0.1979

PC-OM 0.1872 0.1875 0.2048 0.1946

PC-FW 0.1863 0.1869 0.2042 0.1994

AvgNeighDeg-OM 0.1795

 0.1896

 0.1973

 0.1804

BetCentrality-OM 0.1744

 0.1804

 0.1833

 0.1777

ClustCoeff-OM 0.1786

 0.1786

 0.1836

 0.1753

Degree-OM 0.1738

 0.1839

 0.1976

 0.1765

EgoCompSize-OM 0.1756

 0.1833

 0.1967

 0.1827

HITS-OM 0.1774

 0.1911

 0.1813

 0.1798

PageRank-OM 0.1762

 0.1842

 0.1917

 0.1801

TwoHopNeigh-OM 0.1756

 0.1851

 0.1964

 0.1777

AvgNeighDeg-FW 0.1807

 0.1896

 0.2003

 0.1914

BetCentrality-FW 0.1801

 0.1872

 0.2024

 0.1929

ClustCoeff-FW 0.1804

 0.1875

 0.2003

 0.1890

Degree-FW 0.1798

 0.1887

 0.2000

 0.1929

EgoCompSize-FW 0.1789

 0.1896

 0.2009

 0.1938

HITS-FW 0.1801

 0.1902

 0.1997

 0.1926

PageRank-FW 0.1810

 0.1875

 0.2003

 0.1923

TwoHopNeigh-FW 0.1801

 0.1905

 0.2000

 0.1926

Table 7.14. Dynamic ensemble performance values (P@10) using the AR methodology with

social-based user predictors (CAMRa, social dataset).

 HS1 HS2 HS3 HS4

R1 (=1.0) 0.1066 0.1066 0.1072 0.1072

R2 (=0.0) 0.1007 0.0226 0.1007 0.0226

Baseline (=0.5) 0.1509 0.1142 0.1599 0.1219

Best static

(best)

0.1524

(0.4)

0.1200

(0.7)

0.1632

(0.3)

0.1219

(0.5)

Perfect correlation 0.1608 0.1188 0.1640 0.1237

PC-OM 0.1202 0.1164 0.1254 0.1199

PC-FW 0.1189 0.1143 0.1263 0.1219

AvgNeighDeg-OM 0.1489

 0.1195

 0.1599

 0.1131

BetCentrality-OM 0.1443

 0.1132

 0.1487

 0.1114

ClustCoeff-OM 0.1465

 0.1123

 0.1483

 0.1108

Degree-OM 0.1472

 0.1154

 0.1614

 0.1107

EgoCompSize-OM 0.1461

 0.1158

 0.1596

 0.1140

HITS-OM 0.1485

 0.1200

 0.1467

 0.1134

PageRank-OM 0.1471

 0.1167

 0.1579

 0.1123

TwoHopNeigh-OM 0.1478

 0.1171

 0.1585

 0.1118

AvgNeighDeg-FW 0.1518

 0.1191

 0.1623

 0.1204

BetCentrality-FW 0.1491

 0.1180

 0.1577

 0.1213

ClustCoeff-FW 0.1500

 0.1182

 0.1566

 0.1189

Degree-FW 0.1489

 0.1191

 0.1627

 0.1208

EgoCompSize-FW 0.1489

 0.1193

 0.1618

 0.1210

HITS-FW 0.1482

 0.1195

 0.1564

 0.1202

PageRank-FW 0.1491

 0.1186

 0.1610

 0.1211

TwoHopNeigh-FW 0.1500

 0.1195

 0.1619

 0.1211

Table 7.15. Dynamic ensemble performance values (P@10) using the AR methodology

with social-based user predictors (CAMRa, collaborative dataset).

7.3 Experimental results 159

dataset are more discriminative between the combined recommenders, in the sense

that, for instance, the correlations between the two-hop neighbourhood predictor

and the Personal recommender were -0.123 and -0.121 in the social and collabora-

tive-social datasets, respectively. However, the correlations between the two-hop

neighbourhood predictor and kNN were 0.004 and 0.130, that is, in the second data-

set the relative distance in correlation between these two recommenders is larger,

according to the correlation with respect to the predictor. This change in the correla-

tions may explain the fact that in Table 7.15 some of the dynamic ensembles outper-

form the perfect correlation ensemble, which does not take the relative correlation

into account with respect to each individual recommender, as noted in 7.3.1.

In general, the HITS predictor obtains the best results among the dynamic

ensembles for some of the tested combinations. Other predictors such as the

betweenness centrality and the ego components size produce more competi-

tive ensembles in the social version of the dataset, whereas the degree and the

average neighbour degree preditors provide better results for more than one combi-

nation in the CAMRa collaborative dataset.

7.3.4 Discussion

The analysis of the results presented in this chapter shows that ensembles can indeed

benefit from a dynamic weighting of their recommenders. In particular, we have seen

that when these weights come from performance predictors, which previously had

shown significant correlation with the performance of individual recommenders, the

resulting dynamic ensemble tends to outperform static combinations of the recom-

menders. In this context, in order to obtain successful hybridisations, we have to take

several variables into account, which correspond to three stages proposed in our

framework: the correlation between the predictor and the combined recommenders,

the relative performance of such recommenders, the strategy to normalise the predic-

tor‟s values, and the weight distribution among recommenders.

The relative performance of the recommenders has proven to be decisive, since

in some cases, hybridisation does not make sense to begin with, when the difference

in performance between the recommenders is significant and systematic, and thus,

dynamic ensembles cannot obtain the best performance result, although they may

outperform static ensembles. Performance prediction normalisation and weight dis-

tribution, on the other hand, do make a difference in the results. Although no explicit

results are presented in this work regarding different normalisation approaches, pre-

viously conducted experiments showed us that score normalisation produce worse

results than rank normalisation. Finally, the weight distribution strategy is not as

critical as other stages of our framework, but helps to obtain much better results,

specifically, when the one minus strategy (OM) is used.

160 Chapter 7. Dynamic recommender ensembles

The obtained results have also shown that more complex formalisations and

probability models do not necessarily lead to better results, with respect to the adap-

tation and definition of the user and item clarity performance predictors. In this ad-

aptation, various configurations were available, and we experimented with further

extensions of different language models for the same clarity model, using rating and

log-based information. Additionally, several graph-based metrics were tested, where

the concept of the user‟s strength in a social network is modelled in different ways.

We find that different formulations for the user-based performance clarity pre-

dictor consistently obtain the best results in different situations for rating-based pref-

erence information. We also experimented with item-based predictors, and found

that the UserItem, URItem, and RatUser predictors were noticeably better than the

rest of the formulations. When log-based information is exploited, the ItemTime and

TimeSimple predictors obtained better results than other predictors not based on the

clarity concept, such as the Autocorrelation function. Moreover, regarding the social-

based ensembles, the HITS, two-hop neighbourhood, and average neighbour degree

approaches clearly outperform the ensemble weighted by the rest of the predictors

and, in most of the cases, also outperform the baseline static ensemble.

These results are, in general, consistent with the correlation values between the

predictors‟ output values and the recommenders‟ performance values. Figure 7.2

shows a summary of the results presented in this and previous chapters, where the

difference in correlation is plotted against the gain (or loss) in performance with re-

spect to the baseline. For this figure, the best and worst dynamic ensembles were

Figure 7.2. For each best and worst dynamic ensemble in Table 7.2, Table 7.11 and Table 7.15,

this graph plots the difference in correlation between each predictor and a recommender

against the difference in performance between the ensemble and the baseline.

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

-0.4 -0.2 0 0.2 0.4 0.6

Correlation difference

Performance difference

wrt baseline

7.4 Conclusions 161

selected from Table 7.2, Table 7.11 and Table 7.15. In the figure we may observe the

trend that the larger the difference in correlation, the better the improvement over

the baseline, which is in concordance with the requirement that both correlations

should not be very similar. These results provide some insights in order to under-

stand which features may help configure well performing dynamic recommender

ensembles, where performance predictors have emerged as a clear useful characteris-

tic.

7.4 Conclusions

In this chapter we have explored how the performance of a recommender ensemble

can be improved by dynamically assigning the weights of its recommenders, by ana-

lysing the performance correlation between the values of a performance predictor

and the performance of an individual recommender. In this way, we have proposed a

dynamic hybrid framework that let decide when and how dynamic hybridisation

should be done.

Drawing from the performance predictors proposed in the previous chapter, we

have conducted several experiments in order to assess whether recommender en-

sembles can benefit from dynamic weights according to such predictors. The results

obtained in our experiments indicate that a strong correlation with performance

tends to correspond with enhancements in ensembles by using the predictor for

weight adjustment. The dynamic ensembles usually outperformed the baseline static

ensemble for different recommender combinations, supporting their effectiveness in

different situations.

In future work we aim to evaluate our framework with more than two recom-

menders in an ensemble, and more than one performance predictor, eventually, one

for each recommender. We also plan to test different normalisation strategies of the

predictor‟s values, where several assumptions about the ideal weight distribution can

be verified, such as whether the user‟s rating distribution or the recommender‟s out-

put are beneficial for the final performance of the ensemble. Moreover, Machine

Learning approaches could also be used to learn the best weights in a user (or item)

basis. Despite being more time consuming, these techniques may also achieve good

results in terms of performance of the dynamic ensemble, although they are usually

more prone to overfit the learned weights.

Chapter 8

8 Neighbour selection and

weighting in user-based

collaborative filtering

User-based recommender systems suggest interesting items to a user relying on simi-

lar-minded people called neighbours. The selection and weighting of the input from

these neighbours characterise different variants of the approach. Thus, for instance,

while standard user-based collaborative filtering strategies select neighbours based on

user similarities, trust-aware recommendation algorithms rely on other aspects indica-

tive of user trustworthiness and reliability.

In this chapter we restate the user-based recommendation problem, generalising it

in terms of performance prediction techniques. We investigate how to adopt this gen-

eralisation to define a unified framework where we conduct an objective analysis of the

effectiveness (predictive power) of neighbour scoring functions. We evaluate our ap-

proach with several state-of-the-art and novel neighbour scoring functions on two

publicly available datasets. The notion of performance takes here a different nuance

from previous chapters. More precisely, we consider the notion of neighbour perform-

ance, for which we propose several measures and new predictors. In an empirical

comparison involving four neighbour quality metrics and thirteen performance predic-

tors, we find a strong predictive power for some of the predictors with respect to cer-

tain metrics. This result is then validated by checking the final performance of recom-

mendation strategies where predictors are used for selecting and/or weighting user

neighbours. As a result, we are able to anticipate which predictors will perform better

in neighbour scoring powered versions of a user-based collaborative filtering algo-

rithm.

In Sections 8.1 and 8.2 we present a unified formulation and the proposed

framework for neighbour selection and weighting in user-based recommendation, and

in Section 8.3 we describe how the different neighbour scoring functions proposed in

the literature fit into the framework. Finally, in Section 8.4 we present an experimental

evaluation of the framework, and in Section 8.5 we provide conclusions.

164 Chapter 8. Neighbour selection and weighting in user-based CF

8.1 Problem statement

We focus on user-based collaborative filtering algorithms, one type of memory-based

approaches that explicitly seek people – commonly called neighbours – having pref-

erences (and/or other characteristics of interest) in common with the target user, and

use such preferences to predict item ratings for the user. User-based algorithms are

built on the principle that a particular user‟s rating records are not equally useful to

all other users as input to provide them with item suggestions (Herlocker et al.,

2002). Therefore, as stated in Chapter 2, central aspects to these algorithms are a)

how to identify which neighbours form the best basis to generate item recommenda-

tions for the target user, and b) how to properly make use of the information pro-

vided by them. Once the target user‟s neighbours are selected, the more similar a

neighbour is to the user, the more her preferences are taken into account as input to

produce recommendations.

A common user-based recommendation approach consists of predicting the

relevance of an item for the target user by a linear combination of her neighbours‟

ratings, which are weighted by the similarity between the target user and her

neighbours, as presented in Equation (2.3). For the sake of clarity, and since we shall

later elaborate from it, we reproduce here the above equation:

 (8.1)

User similarity has been the central criterion for neighbour selection in most of

the user-based collaborative filtering approaches (Desrosiers and Karypis, 2011).

Nonetheless, recently it has been suggested that additional factors could have a valu-

able role to play on this point. For instance, two users with a high similarity value

may no longer be reliable predictors for each other at some point because of a diver-

gence of tastes over time (O‟Donovan and Smyth, 2005). Thus, in the context of

user-based collaborative filtering, more complex methods have been proposed in

order to effectively select and weight useful neighbours (O‟Donovan and Smyth,

2005; Desrosiers and Karypis, 2011). In this context a particularly relevant dimension

relates the above additional factors with the general concept of trust (trustworthiness,

reputation) on a user‟s contribution to the computation of recommendations. Hence,

a number of trust-aware recommender systems have been proposed in the last dec-

ade (Hwang and Chen, 2007; O‟Donovan and Smyth, 2005; Golbeck, 2009).

Most of these systems focus on the improvement of accuracy metrics, such as

the Mean Average Error, by defining different heuristic trust functions, which, in

most cases, are applied either as additional weighting factors in the neighbourhood-

based formulation, or as a component of the neighbour selection criteria. The way

trust is measured is considerably diverse in the literature. In fact, the notion of trust

8.1 Problem statement 165

has embraced a wide scope of neighbour aspects, spanning from personal trust on

the neighbour‟s faithfulness, to trust on her competence, confidence in the correct-

ness of the input data, or the effectiveness of the recommendation resulting from the

neighbour‟s data. More specifically, in trust-aware recommender systems, a trust

model is defined and, typically, introduced into the Resnick‟s equation (Equation

(8.1)) either as an additional weight or as a filter for the potential user‟s neighbours.

Moreover, depending on the nature of their input, different types of trust-aware rec-

ommendation approaches can be distinguished: rating-based approaches, and social-

based approaches (using a trust network).

One of the first works that proposed rating-based trust metrics between users is

(O‟Donovan and Smyth, 2005). In that work O‟Donovan and Smyth propose to

modify how the “recommendation partners” (neighbours) are weighted and selected

in the user-based collaborative filtering formula. They argue that the trustworthiness

of a particular neighbour should be taken into account in the computed recommen-

dation score by looking at how reliable her past recommendations were. Trust values

are computed by measuring the amount of correct recommendations in which a user

has participated as a neighbour, and then they are used for weighting the influence

(along with computing the similarity), and selecting the target user‟s neighbours.

Weng et al. (2006) propose an asymmetric trust metric based on the expectation of

other users‟ competence in providing recommendations to reduce the uncertainty in

predicting new ratings. The metric is used in the standard collaborative filtering for-

mula instead of the similarity value. Two additional metrics are defined in (Kwon

et al., 2009) based on the similarity between the ratings of a neighbour and the rat-

ings from the community. Finally, Hwang and Chen (2007) define two trust metrics

(local and global) by averaging the prediction error of co-rated items between a user

and a potential neighbour.

Social-based trust metrics make use of explicit trust networks of users, built upon

friendship relations (Massa and Avesani, 2004; Massa and Bhattacharjee, 2004) and

explicit trust scores between individuals in a system (Ma et al., 2009; Walter et al.,

2009). These metrics and, to some extent, their inherent meanings, are different with

respect to rating-based metrics. Nonetheless, Ziegler and Lausen (2004) conduct a

thorough analysis that shows empirical correlations between trust and user similari-

ties, suggesting that users tend to create social connections with people who have

similar preferences. Once such a correlation is proved, techniques based on social-

based trust can be applicable. Golbeck and Hendler (2006) propose a metric called

TidalTrust to infer trust relationships by using recursive search. Inferred trust values

are used for every user who has rated a particular item in order to select only those

users with high trust values. Then, a weighted average between past ratings and in-

ferred trust values provides the predicted ratings. Massa and Avesani (2007b) ex-

166 Chapter 8. Neighbour selection and weighting in user-based CF

periment with local (MoleTrust) and global (PageRank) trust metrics, showing that

trust-based recommenders are very valuable for cold start users.

The research presented here seeks to provide an algorithmic generalisation for a

significant variety of notions, computational definitions, and roles of trust in

neighbour selection. Specifically, we aim to provide a theoretical framework for

neighbour selection and weighting in which trust metrics can be defined and evalu-

ated in terms of improvements on a final recommender‟s performance. We cast the

rating prediction task – typically based, as described above, on the aggregation of

neighbour preferences – into a framework for dynamic combination of inputs, from

a performance prediction perspective, borrowing from the methodology for this area

in the Information Retrieval field. The application of this perspective is not trivial,

and requires a definition of what the performance of a neighbour means in this con-

text. Hence, restated the problem in these terms, we propose to adapt and exploit

techniques and methodologies developed in Information Retrieval for predicting

query performance; in our case the target user‟s neighbours are equivalent to the que-

ries, and our goal is to predict which of these neighbours will perform better for the

target user.

Furthermore, since our framework provides an objective measure of the

neighbour scoring function efficiency, we would be able to obtain a better under-

standing of the whole recommendation process. For instance, if the results obtained

when a particular function is introduced in a recommender are not consistent with

the (already observed) objective performance measures, it would mean that the cho-

sen strategy is not the most appropriate, suggesting to experiment with further

strategies, providing such a function has already shown some predictive power.

Therefore, the main contribution of our framework is that it provides a formal

setting for the evaluation of neighbour selection and weighting functions, while, at

the same time, enables to discriminate whether recommendation performance im-

provements are achieved by the neighbour scoring functions, or by the way these

functions are used in the recommendation computation. Besides, our framework

provides an unification of state-of-the-art trust-based recommendation approaches,

where trust metrics are casted as neighbour performance predictors. As a result, in

this chapter, we shall propose four neighbour quality metrics and thirteen perform-

ance predictors, defined upon a specific neighbour (user-based), a neighbour and the

current user (user-user), or a neighbour and the current item (user-item). We shall

generalise the different strategies proposed in the literature to introduce trust into

collaborative filtering. Moreover, thanks to the proposed formulation, we will define

and evaluate new strategies.

8.2 A performance prediction framework for neighbour scoring 167

8.2 A performance prediction framework for

neighbour scoring

8.2.1 Unifying neighbour selection and weighting in user-

based Recommender Systems

From the observation that most of the methods for neighbour selection and weight-

ing are elaborated upon the standard Resnick‟s scheme (Equation (8.1)), we propose

a unified formulation as follows. Let us suppose, for the sake of generality, that we

have a neighbour scoring function that may depend on the target user , a

neighbour , and a target item . This function outputs a higher value whenever the

user, neighbour, item, or a combination of them, is more trustworthy (in the case of

trust models), or is expected to perform better as a neighbour according to the in-

formation available in the system, such as other ratings and external information, like

a social network. Using this function we generalise Equation (8.1) to:

 (8.2)

where the function denotes the selection of the set of neighbours, and

is an aggregation function combining the output of s and the user similarity into a

single weight value. In this way, we integrate the neighbour scoring function into

the Resnick‟s formula in order to: a) select the neighbours to be considered, instead

of or in addition to the most similar users (via function), and b) provide a

general weighting scheme by introducing an aggregation function between the

actual neighbour score and the similarity between the target user and her neighbours.

Note that it is not required that s is bounded, since a constant would normalise the

output rating value. The function is thus a core component in the generalisation of

the user-based collaborative filtering techniques. It may embody similarity in itself (in

such case may just return its first input argument), but and are left to

simplify the connection with the original similarity-only formulation, and to suit par-

ticular cases where applies other principles distinct to similarity.

The aggregation function can take different definitions, some examples of

which can be found in the literature. For instance, O‟Donovan and Smyth (2005)

initially propose to use the arithmetic mean of the neighbour score () and the simi-

larity (; henceforth denoted as

), and end up using the harmonic mean (

)

because of its better robustness to large differences in the inputs. In (Bellogín and

Castells, 2010), on the other hand, we use the product function (

). Moreover,

Hwang and Chen (2007) propose to directly use the neighbour score as the weight

168 Chapter 8. Neighbour selection and weighting in user-based CF

given to neighbours, that is, they use the projection function
 . Obvi-

ously, the original Resnick‟s formulation can be expressed as the symmetric projec-

tion function
 .

The neighbourhood selection embodied in function also generalises Res-

nick‟s approach – the latter corresponds to the particular case

 , where the neighbour scoring function is ignored, and only similarity is used.

The general form admits different instantiations. In (Golbeck and Hendler, 2006)

only the users with the highest trust values are selected as neighbours. In

(O‟Donovan and Smyth, 2005), on the other hand, those users whose trust values

exceed a certain threshold are taken into consideration. This threshold is empirically

defined as the mean across all the obtained values for each pair of users. The latter

strategy can be formulated as follows:

There are, nonetheless, some considerations to take into account when using

specific combinations of neighbour weighting and neighbour selection functions.

First, if

 is used together with

 – only considering the most similar users

in the neighbourhood –, then less reliable users (with low

) who are very similar

to the current user would be penalised, and more reliable neighbours but less similar

to the current user are ignored, since they do not belong to the neighbourhood. Sec-

ond, when using

 together with

, neighbours are weighted by their simi-

larities with the target user. These similarities, however, could be very low, and thus,

non-similar but reliable neighbours would be penalised. Finally, if

 is used with

, the similarity weight will not be considered at any point in the recommenda-

tion process.

Some of these configurations may deserve further investigation, and are consid-

ered in Section 8.4, along with other combinations not listed here.

8.2.2 Neighbour selection and weighting as a

performance prediction problem

Neighbour scoring and selection can be seen as a task of predicting the effectiveness

of neighbours as input for collaborative recommendations. In this section we elabo-

rate and adapt the performance prediction framework presented in Chapter 5 to the

problem of neighbour selection and weighting.

The same as performance prediction in Information Retrieval, which has been

used to optimise rank aggregation (Yom-Tov et al., 2005a), in our proposed frame-

work each user‟s neighbour can be considered as a retrieval subsystem (or criterion)

8.2 A performance prediction framework for neighbour scoring 169

whose output is combined to form a final system‟s output (the recommendations) to

the user.

For user-based collaborative filtering algorithms, the estimation of the

preference of the target user for a particular item can be formulated as an aggre-

gation function of the ratings of some other users :

 (8.3)

where denotes the selected neighbours for a particular user according to func-

tion (see Equation (8.2)). As observed in (Adomavicius and Tuzhilin, 2005),

different aggregation functions can be defined, but the most typical one is the

weighted average function presented in the previous section.

In the previous function the term can be seen as a retrieval function that

aggregates the outputs of several utility subfunctions , each corre-

sponding to a recommendation obtained from a neighbour of the target user. The

combination of utility values is defined as a linear combination (translated by

)

of the neighbours‟ ratings, weighted by their similarity with the target user.

Hence, the computation of utility values in user-based filtering is equivalent to a typi-

cal rank aggregation model of Information Retrieval, where the aggregated results

may be enhanced by predicting the performance of the combined recommendation

outputs. In fact, the similarity value can be seen as a prediction of how useful a

neighbour‟s advice is expected to be for the target user, which has proved to be a

quite effective approach. The question is whether other performance factors beyond

user similarity can be considered in a way that further enhancements can be drawn,

as research on user trust awareness has attempted to prove in the last years.

The Information Retrieval performance prediction view provides a methodo-

logical approach, which we propose to adapt to the neighbour selection problem.

The approach provides a principled path to drive the formulation, development and

evaluation of effective neighbour selection and weighting techniques, as we shall see.

In the proposed view, the selection/weighting problem is expressed as an issue of

neighbour performance, as an additional factor (besides user similarity) to automati-

cally tune the neighbours‟ contribution to the recommendations, according to the

expected goodness of their advice. As summarised in Section 5.1, there are three core

concepts in the performance prediction problem as addressed in the Information

Retrieval literature: performance predictor, retrieval quality assessment, and predictor

quality assessment. Since we are dealing with the prediction of which users may per-

form better as neighbours, the above three concepts can respectively be translated

into neighbour performance predictor, neighbour quality, and neighbour predictor quality. For the

sake of simplicity, let us assume we can define a performance predictor as a function

that receives as input a user profile (in general, it could receive other users or items

as well), the set of items rated by that user, and the collection of ratings and

170 Chapter 8. Neighbour selection and weighting in user-based CF

items (or any other user preference and item description information) available in the

system. Then, following the notation given used in Chapter 5, we define a neighbour

performance prediction function as:

 (8.4)

The function can be defined in different ways, for instance, by taking into ac-

count the rating distribution of each user, the number of ratings available in the sys-

tem, and the (implicit or explicit) relations made by that user with the rest of the

community. Essentially, the neighbour performance predictor is intended to estimate

the true neighbour quality metric, denoted as , which is typically measured using

groundtruth information about whether the neighbour‟s influence is positive. The

application of this perspective is not trivial, and requires, in particular, a definition of

what the performance of a neighbour means in this context – where no standard

metric for neighbour performance is yet available in the literature.

Once the estimated neighbour performance prediction values are com-

puted for all users, the quality of the prediction can be measured as presented in Sec-

tion 5.4.2, that is, either by measuring the correlation between the estimations and

the real values , or by using classification accuracy metrics such as the F-

measure. Since in this case we are interested in providing a ranking of users, this re-

lates more with the traditional query performance task, and not with query difficulty

(see Section 5.4.1), where the latter metrics are used. In other words, the neighbour

predictor quality metric is defined as the following correlation:

 (8.5)

Similarly to the situation in Information Retrieval, this correlation provides an

assessment of the prediction accuracy (Carmel and Yom-Tov, 2010); the higher its

(absolute) value, the higher the predictive power of . Moreover, the sign of

represents whether the two involved variables – neighbour prediction and neighbour

quality – are directly or inversely correlated.

Besides validating any proposed predictor by checking the correlation between

predicted outcomes and objective metrics, we may further test the effectiveness of

the defined predictors by introducing and testing a dynamic variant of user-based

collaborative filtering. In this variant, the weights of neighbours are dynamically ad-

justed based on their expected effectiveness, along with the decision of which users

belong to each neighbourhood, as in the general formulation presented in Equation

(8.2). We propose to define the neighbour scoring function based on the

values computed from each neighbour performance predictors.

Hence, the basic idea of the framework presented here is to formally treat the

neighbour selection and weighting in memory-based recommendation as a perform-

ance prediction problem. The performance prediction framework provides a princi-

ple basis to analyse whether the predictors are capturing some valuable, measurable

8.3 Neighbour quality metrics and performance predictors 171

characteristic known to be useful for prediction, independently from their latter use

in a recommendation strategy. Furthermore, if a neighbour scoring function with

strong predictive power is introduced into the recommendation process and the per-

formance is not improved, then, new ways of introducing such predictor into the

rating estimation should be tested (either for selection or weighting), since we have

some confidence that this function captures interesting user‟s characteristics, valuable

for recommendation.

8.3 Neighbour quality metrics and performance

predictors

The performance prediction research methodology requires a means to compare the

predicted performance with the observed performance. This comparison is typically

conducted in terms of some one-dimensional functional values, where the perform-

ance is assessed by some specific metric and the prediction can be translated to a

certain numeric value. This value quantifies the expected degree of effectiveness,

providing, thus, a relative magnitude.

Whereas in the context of performance prediction in IR, standard metrics of sys-

tem effectiveness in response to a query are used for this purpose, in the case of pre-

dicting the performance of a neighbour for recommendation we would require to use

metrics that measure how effective a neighbour is. In this section we propose several

neighbour quality metrics and performance predictors which we shall evaluate in

Section 8.4.

8.3.1 Neighbour quality metrics

The purpose of effectiveness predictors in our framework is to assess how useful

specific neighbour profiles are as a basis for predicting ratings for the target user.

Each predictor has to be contrasted to a measure of how “good” the neighbour‟s

contribution is to the global community of users in the system. In contrast with

query performance prediction, where a well established array of metrics are used to

quantify query performance, to the best of our knowledge, in the literature there is

not an equivalent function for neighbours used in user-based collaborative filtering.

We therefore need to introduce and propose some sound candidate metrics.

Ideally, in the proposed framework, a quality metric should take the same argu-

ments as the predictor, and thus, if we have, for instance, a user-item predictor, we

should also be able to define a quality metric that depends on users and items. In

general, we shall focus on user-based predictors, but it would be possible to explore

item-based alternatives. Furthermore, we shall consider metrics taking neighbours as

single input, independently from which neighbourhood is involved (i.e., independ-

172 Chapter 8. Neighbour selection and weighting in user-based CF

ently from the target user), and which item is recommended. At the end of this sec-

tion, nonetheless, we shall introduce a neighbour quality metric suitable for the user-

user scenario, where both the target user and neighbour are taken into account.

Now, we propose three different neighbour quality metrics. The first two metrics

had a different intended use by their authors, but we found they could be useful to

evaluate how good a user is as a neighbour. The third metric was proposed by us in

(Bellogín and Castells, 2010), where the problem of neighbour performance was ex-

plicitly addressed.

Rafter et al. (2009) propose two metrics in order to examine whether the

neighbours have any influence in the recommendation accuracy. Both metrics are

based on the comparison between true ratings and a neighbour‟s estimation of the

ratings, as a way to measure the direction of the neighbour estimation and the aver-

age absolute magnitude of the shift produced by this estimation. Thus, the larger the

neighbour‟s influence, the better her performance, according to our definition of a

“good” neighbour. In this context we use those metrics as follows:

where is a binary function whose output is 1 if its arguments are true, and 0 other-

wise. Metric represents the absolute error deviation of a particular user, and

is the sign of error deviation. Note that
 denotes an inverse neighbour-

hood, which represents those users for whom is a neighbour, and denotes the

items rated by user in the test set. We can observe how each of these metrics

represents a different method to measure how accurate the user is as a neighbour.

In (Bellogín and Castells, 2010) we proposed a metric named neighbour good-

ness, which is defined as the difference in performance of the recommender system

when including vs. excluding the user (i.e., her ratings) from the dataset. For instance,

based on the mean average error standard metric, neighbour goodness can be instan-

tiated as:

where represents the predicted rating computed using only the data in .

This metric quantifies how much a user affects (contributes to or detracts from) the

8.3 Neighbour quality metrics and performance predictors 173

total amount of mean average error of the system, since it is computed in the same

way as that metric, but leaving out the user of interest – in the first term, the user is

completely omitted; in the second term, the user is only involved as a neighbour. In

this way we measure how a user contributes to the rest of users, or put informally,

how better or worse the “world” is in the sense of how well recommendations work

with and without the user. Hence, if the error increases when the user is removed

from the dataset, it is considered as a good neighbour.

Based on the same idea of the previous metric, we propose a user-user quality

metric that measures how one particular user affects to the error of another user

when acting as her neighbour:

We call this metric user-neighbour goodness. It quantifies the difference in

user ‟s error when neighbour is not in the system against the error when such

neighbour is present, that is, it measures how much each neighbour contributes to

reduce the error of a particular user.

8.3.2 Neighbour performance predictors

Having formulated neighbour selection in memory-based recommendation as a task

of neighbour effectiveness prediction, and having proposed effectiveness metrics to

compare against, the core of an approach to this problem is the definition of effec-

tiveness predictors. For this purpose, similarity functions and trust models such as

those mentioned in Section 8.1 can be directly used, since in trust-aware recommen-

dation, trust metrics aim at measuring how reliable a neighbour is when introduced in

the recommendation process (O‟Donovan and Smyth, 2005). Interestingly, some of

them only depend on one user (global trust metrics), and others depend on a user

and an item or another user (local trust metrics). Furthermore, other authors have

proposed different indicators for selecting good neighbours, mainly based on the

overlap between the user and her neighbour, without considering the concept of

trust.

We thus distinguish three types of neighbour performance predictors: user pre-

dictors – equivalent to the global trust metrics –, user-item predictors, and user-

user predictors – equivalent to the local trust metrics. Note that, although trust met-

rics could now be interpreted as neighbour performance predictors, the proposed

performance prediction framework let us to provide an inherent value to these met-

rics (identified as performance predictors), independently from whether they im-

prove a recommender‟s performance when used for selecting or weighting in the

specific collaborative filtering algorithm. This is due to the fact that it is possible to

empirically check the quality of the prediction by analysing their correlation with re-

spect to the neighbour performance metric, prior to the integration in any collabora-

174 Chapter 8. Neighbour selection and weighting in user-based CF

tive filtering method. Thus, each predictor would obtain an explicit score that repre-

sents its predictive power, related to our a priori confidence on whether such predic-

tor is capturing the neighbour‟s reliability or trustworthiness.

In the following we propose an array of neighbour effectiveness prediction

methods, by adapting and integrating trust functions from the literature into our

framework, and we also propose novel prediction functions.

User Predictors

User predictors are performance predictors that only depend on the target

neighbour. When that neighbour is predicted to perform well, her assigned weight in

the user-based collaborative filtering formulation is high.

One of the first user trust metrics proposed in the literature is the profile-level

trust (O‟Donovan and Smyth, 2005), which is defined as the percentage of correct

recommendations in which a user has participated as a neighbour. If we denote the

set of recommendations in which a user has been involved as

then the predictor is defined as follows:

where the definition of correct recommendations depends on a threshold :

 being a binary function like before whose output is a value if the predicate

 is true, and 0 otherwise. That is, the recommendations considered as correct are

those in which the user was involved as a neighbour, and her ratings were close (up

to a distance of) to the actual ratings.

A similar trust metric, called expertise trust, is presented in (Kwon et al., 2009),

where the concept of „correct recommendation‟ is also used. In that work Kwon and

colleagues introduce a compensation value for situations in which few raters are

available. Specifically, the correct recommendation function only outputs a value of 1

when there are enough raters for a particular item (more than 10 in the paper). Oth-

erwise, an attenuation factor is introduced by dividing the number of raters by 10, in

the same way as significance weighting is introduced in Pearson‟s correlation in

(Herlocker et al., 2002). More formally, the predictor is defined as:

8.3 Neighbour quality metrics and performance predictors 175

where is 1 when item has more than 10 raters, and denotes the users who

rated item . In the same paper the authors propose another trust metric called

trustworthiness, which is equivalent to the absolute value of the similarity between

the target user‟s ratings and the average ratings given by the community (denoted as

). The authors introduce the significance weighting factor as in (Herlocker et al.,

2002), in a way that is 1 when user has more than 50 ratings; otherwise, is

computed as the user‟s ratings divided by 50. Once the factor is computed, the

predictor is defined as follows:

Hwang and Chen (2007) present a global trust metric, which we call global trust

deviation, defined as an average of local (user-to-user) trust deviations. This metric

makes use of the predicted rating for a user–item pair by using only one user as

neighbour:

where user is the considered neighbour. The predictor is then computed by averag-

ing the prediction error of co-rated items between each user, and normalising the

error according to the rating range (e.g. in a typical 1 to 5 rating scale,):

Finally, a performance predictor inspired by the clarity score defined for query

performance (Cronen-Townsend et al., 2002) was proposed in (Bellogín and Castells,

2010), considering its adaptation to predict neighbour performance in collaborative

filtering. In the same way query clarity captures the lack of ambiguity in a query, user

clarity is expected to capture the lack of ambiguity in a user‟s preferences. Thus, the

amount of uncertainty involved in a user‟s profile is assumed to be a good predictor

of her performance; and the larger the following value, the lower the uncertainty and

the higher the expected performance:

The probabilistic models defined in that work are based on smoothing estima-

tions and conditional probabilities over users and items. Specifically, a uniform dis-

tribution is assumed for users and items, whereas the user-user probability is defined

by an expansion through items as follows:

176 Chapter 8. Neighbour selection and weighting in user-based CF

Conditional probabilities are linearly smoothed with the user‟s probabilities and

the maximum likelihood estimators, which finally depend on the rating given by the

user towards an item; i.e., .

It is interesting to note that this predictor (and the probability model in which is

grounded) does not correspond with any of the adaptations of the clarity score pro-

posed in Chapter 6, since relations between users are not considered in any of the

rating-based probability models presented.

In addition to the integration of the above methods in the role of neighbour ef-

fectiveness predictors in our framework, we propose two novel predictors based on

well known quantities measured over the probability models of (Bellogín and Castells,

2010): the entropy and the mutual information. Entropy, as an information-theoretic

magnitude, measures the uncertainty associated with a probability distribution (Cover

and Thomas, 1991). Borrowing the definition of user entropy from Chapter 6, we

hypothesise that the uncertainty in the system‟s knowledge about a user‟s preferences

may be a relevant signal in the effectiveness of a user as a potential neighbour, which

could be captured by the entropy of the item distribution as follows:

Note that uncertainty, measured in this way, can be due to the system‟s knowl-

edge about the user‟s tastes, or may come from the user herself (e.g. some users may

have strong preferences, while others may be more undecided), and both causes may

similarly affect the neighbour effectiveness. In either case the predictor can be inter-

preted as the lack of ambiguity in a user profile.

The second information-theoretic magnitude we propose to use over the prob-

ability models presented above is the mutual information. To be precise, the mutual

information is a quantity computed between two random variables that measure the

mutual dependence of the variables, or, in other terms, the reduction in uncertainty

about one variable provided some knowledge about the other (Cover and Thomas,

1991). Here, we propose to adapt this concept, and compute the mutual informa-

tion between the neighbour and the rest of the community in order to assess the

uncertainty involved in the neighbour‟s preferences. For this purpose, instead of

computing the mutual information over all the events in the sample space for both

variables (users), we fix one of them (for the current neighbour), and move along the

other dimension:

8.3 Neighbour quality metrics and performance predictors 177

User-Item Predictors

User-item predictors consist of performance predictors that depend on a user-item

pair. More specifically, they are defined upon the active neighbour and the target

item. This type of predictor is more difficult to apply because of its higher vulnerabil-

ity to data sparsity. In a bi-dimensional user-item input space less observations can be

associated to each input data point, whereby the confidence on the predictor out-

come is lower, as it can be biased to outliers or unusual users or items.

A local trust metric based on the target user and item is proposed in

(O‟Donovan and Smyth, 2005). This metric is called item-level trust, and aims to

discriminate reliable neighbours depending on the current item, since the same user

may be more trustworthy for predicting ratings for certain items than for others. The

formulation of this predictor can be seen as a particularisation of , but constraining

the recommendation set only to the pairs in which the current item is involved:

User-User Predictors

The user-user predictors take as inputs two users: the active user and the current

neighbour. User-user predictors based on local trust metrics have been studied fur-

ther than user-item predictors in the literature, since the former are able to represent

how much a user can be trusted by another, and let for different interpretations of

the relation between users. These metrics have been often researched in the scope of

social networks, and the users‟ explicit links in this context (Ziegler and Lausen,

2004; Massa and Avesani, 2007a), along with several trust metrics based on ratings, as

we shall show below. In this way, although social-based metrics could be smoothly

integrated in our framework, here we focus on a complementary view on trust where

predictors are defined based on ratings. We leave other type of predictors as future

work.

A first simple neighbour reliability criterion one may consider is the amount of

common experience with the target user, that is, the amount of information upon

which the two users can be compared. If we define “user experience” as the set of

items the user has interacted with, we may define a predictor embodying this princi-

ple as:

We shall refer to this predictor as user overlap. This predictor will serve as a ba-

sis for subsequent predictors, since most of them will depend on the items rated by

both users. For instance, it has a clear use in assessing the reliability of the inter-user

similarity assessments, which has been applied in the literature under a more practi-

178 Chapter 8. Neighbour selection and weighting in user-based CF

cal, ad-hoc manner. Specifically, Herlocker et al. (2002) proposed the introduction of

a weight on the similarity function, where the latter is devalued when it has been

based on a small number of co-rated items. We may formulate Herlocker’s signifi-

cance weighting predictor as follows:

where is the minimum number of co-rated items that two users should have in

common in order to avoid similarity penalisation. A value of was proved

empirically to work effectively.

A variation of the previous scheme was proposed in (McLaughlin and Herlocker,

2004), to which we shall refer as McLaughlin’s significance weighting:

This predictor is aimed to be equivalent to the Herlocker‟s significance weighting

() formulation when . However, we note that and represent

different concepts, and are not fully equivalent. For instance, as noted in (Ma et al.,

2007), may return values larger than 1 when , while , by defi-

nition, always returns a value in the interval.

Alternatively, the following variant can be drawn from (Ma et al., 2007), which is

just a more compact reformulation of :

A more elaborated predictor was proposed in (Weng et al., 2006). The rationale

behind such predictor is to consider two situations depending whether or not user

takes into account the recommendation made by neighbour . In this sense trustwor-

thiness is defined as the reduction in the proportion of incorrect predictions of going

from the latter situation to the former. The definition of this predictor, denoted as

user’s trustworthiness, is the following:

In this formulation represents the number of allowed rating values in the

system (e.g. in a 1 to 5 rating scale,), the function represents

the number of co-rated items on which ‟s ratings have the value while ‟s ratings

are , that is, when each rating tuple is repre-

sented as , given a user , an item , and a rating value . In the same way,

 represents all the co-rated items between and

8.4 Experimental results 179

rated with any rating value by user , and, analogously, .

In this case, the assumed hypothesis is that trust is one‟s expectation of other‟s com-

petence in reducing its uncertainty in predicting new ratings.

Finally, a user-user predictor can be defined based on the global trust deviation

predictor defined above (). In fact, Hwang and Chen (2007) define trust deviation

by ignoring the average along users as follows:

This predictor identifies effective neighbours mainly based on how many trustworthy

(understood as “accurate”) recommendations a user has received from another.

8.4 Experimental results

In this section we report experiments in which the proposed neighbour effectiveness

prediction framework is tested. First, we check the existing correlations between the

user-based predictors defined in Section 8.3.2 and the neighbour performance met-

rics proposed in Section 8.3.1, as a direct test of their predictive power. For the user-

item predictors we cannot analyse their correlation because we have no neighbour

performance metric depending on both the target user and an item available.

Moreover, we test the usefulness of the predictors to enhance the final perform-

ance of memory-based algorithms, by using the predictors‟ values in the selection and

weighting of neighbours, that is, by taking the predictors as the scoring function in

Equation (8.2).

Our experiments were conducted on two versions of the MovieLens dataset,

namely the 100K and 1M versions, described in Section 3.4.1 and Appendix A.1. For

the user-based collaborative filtering method, we used Pearson‟s correlation as the

similarity measure between users, and a varying neighbourhood size (), which is a

parameter with respect to which the results were examined.

8.4.1 Correlation analysis

We analyse the correlation between neighbour quality metrics and neighbour per-

formance predictors in terms of the Pearson and Spearman‟s correlation metrics.

Correlation provides a measure of the predictive power of the neighbour effective-

ness prediction approaches: the higher the (absolute) correlation value, the better the

predictor estimates the positive neighbour effect on the recommendation accuracy.

The sign of the correlation coefficient represents whether the two involved variables

– neighbour quality metric and neighbour performance predictor – are directly or

inversely correlated.

180 Chapter 8. Neighbour selection and weighting in user-based CF

Table 8.1 and Table 8.2 show the correlation values obtained on the MovieLens

100K dataset for the user-based predictors. We associate a sign to each quality metric

indicating whether the metric is direct (denoted as „+‟) or inverse (denoted with „-‟),

according to the expected sign of the correlation with the predictor, i.e., a metric is

direct if the higher its value, the better the true neighbour performance. We can ob-

serve that the Spearman‟s correlation values are consistent, but slightly higher than

Pearson‟s, thus evidencing a non-linear relationship between the quality metrics and

the performance predictors.

The absolute error deviation () metric presents higher values when the

neighbour‟s prediction is less accurate, being thus an inverse neighbour metric. The

other two metrics, sign of error () and neighbour goodness (), are, by definition,

direct neighbour metrics, since the former indicates how many times a recommenda-

tion from the neighbour has been made in the right direction, whereas the latter

represents the change in error between excluding a particular user in the neighbour-

hood or including her, and thus, the larger this error, the “better” neighbour this

user.

Absolute error deviation

 (-)

Neighbour goodness

 (+)

Sign of error

 (+)

Clarity -0.21 +0.17 +0.14

Entropy -0.18 +0.18 +0.12

Expertise -0.62 +0.03 +0.25

Global Trust Deviation -0.35 -0.01 +0.08

Mutual Information -0.20 +0.17 +0.12

Profile Level Trust +0.62 -0.04* -0.24

Trustworthiness -0.21 +0.03 +0.20

Table 8.1. Pearson’s correlation between the proposed neighbour quality metrics and

neighbour performance predictors in the MovieLens 100K dataset. Next to the metric

name, an indication about the sign of the metric – direct(+) or inverse(-) – is included.

Not significant values for a -value of are denoted with an asterisk (*).

Absolute error deviation

 (-)

Neighbour goodness

 (+)

Sign of error

 (+)

Clarity -0.30 +0.16 +0.21

Entropy -0.22 +0.17 +0.15

Expertise -0.65 +0.02 +0.30

Global trust deviation -0.38 -0.03 +0.11

Mutual Information -0.25 +0.16 +0.17

Profile Level Trust +0.65 -0.02 -0.30

Trustworthiness -0.24 +0.03 +0.25

Table 8.2. Spearman’s correlation between quality metrics and performance predictors

in the MovieLens 100K dataset.

8.4 Experimental results 181

We can observe in Table 8.1 that, except for some of the predictors that obtain

very low absolute values (), the four quality metrics are consistent with each

other. This consistency is evidenced by the way the predictors correlate with the dif-

ferent metrics: some of the predictors obtain the correct correlations in every situa-

tion, that is, positive correlation with direct metrics and negative correlation with the

inverse metric (like the clarity predictor), while other predictors obtain opposite val-

ues for all the metrics, that is, positive correlations with the inverse metric and nega-

tive correlations with direct metrics (such as the profile level trust predictor).

Also in Table 8.1 and Table 8.2 we see that each metric captures a different no-

tion of neighbour quality because they show different correlation values with respect

to the predictors. In this way, although consistent correlation results are obtained for

direct and inverse metrics, each of them is actually detecting a different nuance of

how a neighbour should behave in order to perform well.

Table 8.3 and Table 8.4 show the correlation values obtained on the Movie-Lens

1M dataset. We can observe that the trend in correlation is very similar to the behav-

ior observed on the 100K dataset, and thus, similar conclusions can be drawn from

it. There are, however, some changes in the absolute values of the correlation scores

for some combinations of performance predictor and quality metric. For instance,

Absolute error deviation

 (-)

Neighbour goodness

 (+)

Sign of error

 (+)

Clarity -0.14 +0.40 +0.02

Entropy -0.07 +0.39 -0.08

Expertise -0.95 -0.06 +0.70

Global Trust Deviation -0.55 -0.24 +0.36

Mutual Information -0.17 +0.30 +0.13

Profile Level Trust +0.83 +0.04 -0.55

Trustworthiness -0.27 +0.03 +0.36

Table 8.3. Pearson’s correlation between quality metrics and performance predictors in

the MovieLens 1M dataset. All the values are significant for a -value of .

Absolute error deviation

 (-)

Neighbour goodness

 (+)

Sign of error

 (+)

Clarity -0.16 +0.35 +0.04

Entropy -0.03 +0.37 -0.10

Expertise -0.94 -0.09 +0.69

Global trust deviation -0.54 -0.25 +0.39

Mutual information -0.16 +0.31 +0.04

Profile level trust +0.94 +0.09 -0.69

Trustworthiness -0.25 +0.02 +0.37

Table 8.4. Spearman’s correlation between quality metrics and predictors in the

MovieLens 1M dataset.

182 Chapter 8. Neighbour selection and weighting in user-based CF

the clarity predictor and the neighbour goodness metric obtain larger values in this

dataset, while the correlation between entropy and absolute error deviation is smaller.

It is important to note that the number of points used to compute the correla-

tion values is different in the two datasets; there are less than 1,000 points in

MovieLens 100K (with 943 users), and more than 6,000 points in MovieLens 1M

dataset. This difference affects the significance of the correlation results, as already

described in Section 5.4.2, where we observed how the confidence test for a Pear-

son‟s (and Spearman‟s) correlation depends on the size of the sample, and thus, the

significance of a correlation value may change for different sample sizes.

In our experiments, for MovieLens 100K, the correlations are significant for a -

value of when , and in the 1M dataset when . Hence, in Ta-

ble 8.1, there is only one non-significant correlation value (denoted with an asterisk),

whereas in Table 8.3, all the results are statistically significant.

Analysing in more detail the reported results for both datasets, we observe that

the profile level trust predictor consistently obtains direct correlation values with

inverse metrics, whereas inverse correlation values are obtained with direct metrics.

This predictor seems to give higher scores to neighbours with larger deviations in

their accuracy error, which would result on bad performance prediction because

these values are not in the same direction than the performance metrics. The exper-

tise and global trust deviation predictor obtain strong inverse correlations with the

absolute error deviation metric, although their correlations with respect to the

neighbour goodness metric are negligible, especially for the first predictor, in both

datasets. At the other end of the spectrum, the clarity, entropy, and mutual informa-

tion predictors obtain strong correlation values with the neighbour goodness, and

moderate correlations with the rest of metrics, which make these predictors good

candidates for successful neighbour performance predictors. Finally, the trustworthi-

ness predictor obtains a significant amount of correlation with respect to the absolute

error deviation and sign of error metrics, although its correlation with respect to the

neighbour goodness is very low. This predictor thus seems to be useful on estimating

how accurate the neighbour may be in terms of the error in a user basis, but probably

not as a global metric.

Table 8.5 shows the correlations obtained for user-user neighbour predictors and

the proposed user-neighbour clarity metric. Due to the high dimensionality of the

vectors involved in this computation, we have considered only those users that have

at least one item in common. Despite this fact, correlations are almost negligible,

except for the McLaughlin‟s significance weighting predictor and the Spearman‟s

coefficient, which evidences a non-linear relation between this predictor and the met-

ric. In the next section we shall show that this function is one of the best performing

predictors among the evaluated neighbour scoring functions. This result confirms the

usefulness of the proposed neighbour performance metric since it is able to discrimi-

8.4 Experimental results 183

nate which neighbour performance predictors are able to capture interesting proper-

ties between the user and her neighbours.

In summary, we have observed that most of the performance predictors agree

with respect to the different performance metrics, and in general, the correlations

computed between neighbour quality metrics and neighbour performance predictors

are statistically significant.

8.4.2 Performance analysis

The results reported in the previous section show that some of the studied predictors

have the ability to capture neighbour performance, and because of that we hypothe-

sise that they could be used to improve the accuracy of a recommendation model.

This hypothesis, nonetheless, has to be checked since the metric against which we

measure the neighbour goodness is not the same as the final recommendation per-

formance metric we aim to optimise. With the experiments we report next we aim to

confirm the usefulness of the proposed predictors, the validity of the proposed met-

rics as useful references to assess the power of the predictive methods, and the use-

fulness of the overall framework as a unified approach to enhance neighbourhood-

based collaborative filtering.

In order to achieve this we test the integration of the neighbour predictors into a

neighbour selection and weighting scheme for user-based collaborative filtering, as

described in Section 8.2.1. Besides testing the effectiveness of the predictors, this

experiment provides for observing to what extent the correlations obtained in the

previous section correspond with improvements in the final performance of those

predictors.

We provide recommendation accuracy and precision results on the MovieLens

1M dataset. Those obtained on the MovieLens 100K dataset are not reported here

since they had similar trends. Figure 8.1 and Figure 8.2 show the Root Mean Square

Error (RMSE) of the Resnick‟s collaborative filtering adaptation proposed in Equa-

tion (8.2) when used for different neighbour selection and weighting approaches. The

curves at the top of the figures represent the values obtained when neighbour per-

Movielens 100K Movielens 1M

Pearson Spearman Pearson Spearman

Herlocker 0.02 0.03 0.01 0.02

McLaughlin 0.01 0.12 0.01 0.11

Trust Deviation 0.01 0.01 0.01 0.01

User Overlap 0.02 0.03 0.02 0.02

User’s Trustworthiness -0.02 -0.02 -0.01 -0.01

Table 8.5. Correlation between the user-neighbour goodness and user-user predictors

in the two datasets evaluated.

184 Chapter 8. Neighbour selection and weighting in user-based CF

formance predictors are used for neighbour weighting, that is, when the standard

neighbour selection strategy is used (

 in Equation (8.2)). Note that

since the lines represent errors, the lower these values, the better the performance.

Besides, Figure 8.3 presents the results found with the precision at 10 (P@10) rank-

ing metric of a subset of the proposed methods, where in this case the higher the

values, the better the performance.

A different aggregation function is used in each approach, depending on whether

the harmonic mean between the predictor score and the similarity value (function

, on the right), or the projection function (

, on the left)

are used, in the latter case in order to ignore the similarity. The curves at the bottom

Figure 8.1. Performance comparison for user-based predictors and different neighbourhood

sizes.

8.4 Experimental results 185

of the figures show the neighbour selection approach (

 in Equation

(8.2)) along with the same neighbour weighting functions described above (i.e.,

on the right and

 on the left). The rest of the aggregation functions, such as

average (

) and product (

), were also evaluated for neighbour selection and

weighting, but provided results equivalent to those of the harmonic mean. For this

reason, they have been omitted in the figures to avoid cluttering them. We believe

this equivalence may be due to the normalisation factor included in the collaborative

filtering formulation, since it would cancel out the weights obtained by the harmonic,

average, and product functions in the same way.

Figure 8.2. Performance comparison using user-item and user-user predictors for different

neighbourhood sizes.

186 Chapter 8. Neighbour selection and weighting in user-based CF

Figure 8.1 shows the accuracy results when only user-based neighbour predictors

are evaluated. We observe that, independently from the neighbourhood size, using

performance predictors as similarity scores does not lead to large differences with

respect to the baseline. These results are compatible with those presented in (Weng

et al., 2006), where the improvement in RMSE is not very high (MAE < 0.05 in

that work). For the sake of clarity, in Table 8.6 and Table 8.7 we show the error val-

ues for a horizontal cut of the left curves; specifically, when the neighbourhood size

is 50. We can observe that some predictors do improve Resnick‟s accuracy. Regard-

ing the use of the harmonic mean as aggregation function (curves on the right), simi-

lar results are obtained except for very large neighbourhood sizes, for which some of

the performance predictors produce worse results than the baseline, probably due to

the amount of noise created by considering too many neighbours.

The curves at the bottom of the figures represent the accuracy results for

neighbour selection strategies. In this case some of the predictors lead to worse per-

formance than the baseline, particularly the profile level trust (). This situation is

consistent with the correlations observed in the previous section, since this predictor

obtained inverse correlations with the different metrics, i.e., direct correlation values

 RMSE RMSE

Resnick 1.174 Resnick 1.174

Clarity 1.181 Herlocker 1.175

Entropy 1.175 Item-level Trust 1.264

Expertise 1.171 McLaughlin 1.174

Global Trust Deviation 1.173 Trust Deviation 1.173

Mutual Information 1.180 User Overlap 1.175

Profile Level Trust 1.177 User’s Trustworthiness 1.175

Trustworthiness 1.175

Table 8.6. Detail of the accuracy of baseline vs. recommendation using neighbour

weighting; here, performance predictors are used as similarity scores (50 neighbours).

 RMSE RMSE

Resnick 1.174 Resnick 1.174

Clarity 1.172 Herlocker 1.156

Entropy 1.189 Item-level Trust 1.843

Expertise 1.139 McLaughlin 0.581

Global Trust Deviation 1.158 Trust Deviation 1.168

Mutual Information 1.171 User Overlap 1.146

Profile Level Trust 1.310 User’s Trustworthiness 1.174

Trustworthiness 1.162

Table 8.7. Detail of the accuracy of baseline vs recommendation using neighbour

selection; here, performance predictors are used for filtering (50 neighbours).

8.4 Experimental results 187

with inverse metrics, and inverse values with direct metrics. Moreover, as predicted

by the correlation analysis, trustworthiness (), mutual information (), and clarity

() result in some of the best performing recommenders (with strong correlations),

as shown in the figures and in Table 8.7, along with expertise () and global trust

deviation (), which obtained more moderated correlation values.

In Figure 8.2 we can see how user-item and user-user neighbour predictors affect

the performance of collaborative filtering recommenders. The curves in the top show

that most of the predictors obtain a similar performance to that of the baseline, ex-

cept for the item-level trust (), the performance of which is much worse than Res-

nick‟s. Table 8.6 shows the specific error values for these recommenders. It is inter-

esting to note that the performance of this predictor is drastically improved when

using the harmonic mean as the aggregation function (shown on the right side of the

figure). Similarly to user-based neighbour predictors (Figure 8.1), some of the user-

item and user-user predictors decrease their accuracy with large neighbourhoods; in

this case, user‟s trustworthiness () and McLaughlin‟s significance weighting ()

are the more representative examples.

Figure 8.3. Performance comparison using ranking-based metrics for both user and user-

user neighbour predictors using the AR and 1R evaluation methodologies.

0.000

0.005

0.010

0.015

0.020

0.025

10 20 50 100 200

P
@

1
0

Neighbourhood size

AR

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

10 20 50 100 200

P
@

1
0

Neighbourhood size

1R

0.0000

0.0500

10 20 50 100 200 1000 2000 4000 6000P
@

10

Neighbourhood size

AR
Resnick Entropy Clarity Expertise

Global Trust Deviation Mutual Information Profile Level Trust Trustworthiness

0.00

0.10

0.20

0.30

0.40

0.50

0.60

10 20 50 100 200

P
@

10

Neighbourhood size

AR

0.000

0.005

0.010

0.015

0.020

0.025

0.030

10 20 50 100 200

P
@

1
0

Neighbourhood size

1R

0.0000
1.0000

10 20 50 100 200 1000 2000 4000 6000P
@

1
0

Neighbourhood size

AR
Resnick Item-level Trust User Overlap Herlocker's SW

A Trust Deviation User's Trustworthiness McLaughlin's SW

188 Chapter 8. Neighbour selection and weighting in user-based CF

A different conclusion results when neighbour selection is analysed (curves at

the bottom). Two of the predictors are characterised by a much better (McLaughlin‟s

significance weighting,) or worse (item-level trust,) final performance, inde-

pendently from the weighting aggregation function. Table 8.7 shows the specific er-

ror values obtained for each of these predictors. It is interesting how the McLaugh-

lin‟s predictor, despite its inability to boost good neighbours (see top figures), seems

to be very useful for neighbour selection. This effect, nonetheless, is attenuated when

the neighbourhood increases, since in that situation, selection methods have to deal

with too many users in each neighbourhood. We believe the reason why this predic-

tor is very good for neighbour selection is because it gives higher scores to those

neighbours that have more items in common with the target user, and thus the con-

fidence in the computation of the similarity values between the neighbour and the

target user is higher. It is worth noting that, to the best of our knowledge, this func-

tion has never been used for neighbour selection, since its original motivation was to

penalise the similarity value whenever it has been based on a small number of co-

rated items. However, by plugging this function into our framework, and measuring

its predictive power for user-neighbour performance, a novel application naturally

emerges and provides very good results.

Finally, in Figure 8.3 we can observe that a similar trend is found with P@10 for

both user-based predictors (top curves), and user-item and user-user predictors (bot-

tom curves). In the figure we only present the results of the neighbour selection and

weighting approaches for less than 200 neighbours, since the results of the rest of the

approaches and neighbourhoods are very similar. It is worth noting that the two

methodologies evaluated – AR and 1R – agree on the order of the best and worst

performing dynamic approaches, although as already observed in the previous chap-

ter, the absolute performance values obtained with each methodology may be very

different – e.g. the maximum P@10 value with 1R is 0.1, which is reached by several

recommendation methods with the AR methodology. More interestingly, these re-

sults show consistency between the performance of some dynamic approaches using

error- and ranking-based metrics, since the best and worst predictors according to

RMSE and P@10 are the same; McLaughlin‟s significance weighting and item-level

trust, respectively. Moreover, the entropy and clarity user-based predictors show

worse performance in small neighbourhoods, but outperform the baseline signifi-

cantly in larger neighbourhoods, something different to what we observed in the

previous experiment with error-based metrics.

In summary, we have been able to validate both the proposed user-user

neighbour performance metrics, and the different evaluated user-user neighbour per-

formance predictors. We have obtained positive results when this type of predictors

has been introduced and compared against the baseline in the different aggregation

strategies and configurations, and these results are consistent with the correlations

8.4 Experimental results 189

obtained between the predictors and the performance metrics. In particular,

McLaughlin‟s significance weighting obtains an improvement up to 55% in both

accuracy (i.e., error decrease) and precision (i.e., precision improvement) when this

predictor is used to select the neighbours which will further contribute to the rating

prediction. Besides, the (Spearman‟s) correlation for this predictor is positive and

strong, in contrast to the values obtained for the rest of user-user predictors, which

did not improve the accuracy of the baseline. In this context, a possible drawback of

the conducted analysis is that we have not been able to define neighbour perform-

ance metrics based on user-item pairs, and thus the user-item neighbour performance

predictors are out of the scope of the developed correlation analysis. Nevertheless,

the obtained results showed that the only user-item neighbour performance predictor

defined here – the item-level trust – is not able to outperform the baseline recom-

mender. We believe this fact, which is in contradiction with what was reported in

(O‟Donovan and Smyth, 2005), may be caused by the different variables taking place

in our evaluation, such as the dataset (MovieLens 1M instead of MovieLens 100K),

the neighbourhood size (not specified in the original paper), and the several aggrega-

tion functions and combinations used across our experiments.

8.4.3 Discussion

The reported experiment results provide empiric evidence of the usefulness of the

proposed framework, and the specific proposed predictors, as an effective approach

to enhance the accuracy of memory-based collaborative filtering. As described in the

preceding sections, the methodology comprises two steps, one in which the predic-

tive power of neighbour predictors is assessed, and one in which the predictors are

introduced in the collaborative filtering scheme to enhance the effectiveness of the

latter. Our experiments confirm a strong correlation for some of the predictors –

both user predictors and user-user predictors –, and this has been found to corre-

spond with final accuracy enhancements in the recommendation strategy: the predic-

tors that obtain strong direct correlations with the performance metrics are the best

performing dynamic strategies; the profile level trust predictor, which obtains inverse

correlation values with respect to the neighbour performance metrics, is the worst

performing dynamic strategy.

In light of these results, it could be further investigated whether the actual corre-

lation values between neighbour performance predictors and neighbour performance

metrics could be used to infer how each predictor should be incorporated into a

memory-based collaborative filtering method as a neighbour scoring function, since

there is no obvious link between the ranking of the best performing scoring func-

tions and the strength of their corresponding correlations. As a starting point, only

the sign of the correlation could be considered, using either the raw neighbour pre-

dictor score (for positive correlations) or its inverse (for negative values). Then, this

190 Chapter 8. Neighbour selection and weighting in user-based CF

rationale could be further elaborated and evaluated in order to check whether the

performance improvements are consistent.

Research on finding functions with strong correlation power with respect to

neighbour performance metrics could be an interesting area by itself, since it could

have different final applications. We have experimented here with variations in

neighbour selection and weighting for user-based collaborative filtering, but those

predictors (functions) could also be used, for instance, for active learning (Elahi,

2011), or for providing more meaningful explanations (Marx et al., 2010), depending

or based on the predicted performance of a particular user‟s neighbours.

8.5 Conclusions

We have shown in this chapter that performance prediction does not only serve to

aggregate entire recommender systems, but also to aggregate subcomponents of re-

commender algorithms – in this case, neighbour related terms in collaborative filter-

ing. We propose a theoretical framework for neighbour selection and weighting in

user-based recommender systems, which is based on a performance prediction ap-

proach drawn from the query performance methodology of the Information Retrieval

field. By viewing the neighbourhood-based collaborative filtering rating prediction

task as a case of dynamic output aggregation, our approach places user-based col-

laborative filtering in a more general frame, linking to the principles underlying the

formation of ensemble recommenders, and rank aggregation in Information Re-

trieval. By doing so, it is possible to draw concepts and techniques from these areas,

and vice versa. Our study thus provides a comparison of different state-of-the-art

rating-based trust metrics and other neighbour scoring techniques, interpreted as

neighbour performance predictors, and evaluated under this new angle. The frame-

work lets an objective analysis of the predictive power of several neighbour scoring

functions, integrating different notions of neighbour performance into a unified view.

Thus, the proposed methodology discriminates which neighbour scoring functions are

more effective in predicting the goodness of a neighbour, and thus identifies which

weighting functions are more effective in a user-based collaborative filtering algo-

rithm.

Drawing from different state-of-the-art neighbour scoring functions – cast as

user, user-user, and user-item neighbour performance predictors –, we have reported

several experiments in order to, first, check the predictive power of these functions,

and second, validate them by comparing the final performance of neighbour-scoring

powered memory-based strategies with that of the standard collaborative filtering

algorithm. We also evaluate different ways to introduce these functions in the rating

prediction formulation, namely for neighbour weighting, neighbour selection, and

combinations thereof. In this context, methods where neighbour scoring functions

8.5 Conclusions 191

were integrated outperform the baseline for different values of neighbourhood size

and predictor type.

We have also proposed several neighbour performance metrics that capture dif-

ferent notions of neighbour quality. The evaluated performance predictors show

consistent correlations with respect to these metrics, and some of them present par-

ticularly strong correlations. Interestingly, a correspondence is confirmed between

the correlation analysis and the final performance results, in the sense that the corre-

lation values obtained between neighbour performance predictors and neighbour

performance metrics anticipate which predictors will perform better when intro-

duced in a memory-based collaborative filtering algorithm.

This research opens up the possibility to several research lines for the integration

of other types of predictors and trust metrics into our framework. For instance, per-

formance predictors defined upon social data, such as those defined in Chapter 6

based on user‟s trust network, could be smoothly integrated into our framework and

analysed in the future. Furthermore, alternative neighbour performance metrics may

be defined to check the predictive power of user-user and user-item predictors.

These metrics may help better understand which characteristics of the neighbour

performance such predictors are capturing, although based on a smaller amount of

information since in rating-based systems users only rate items once. In particular,

our framework would allow for different interpretations of the user‟s performance,

by modelling different neighbour performance metrics, which may be oriented to

accuracy (using error metrics as in this chapter), ranking precision, or even alternative

metrics such as diversity, coverage and serendipity (Shani and Gunawardana, 2011).

Additionally, other predictors based on item information could be defined similar to

those proposed in (Weng et al., 2006; Ma et al., 2007), and easily incorporated into

our framework using item-based algorithms instead of user-based.

	IV Applications
	Chapter 7
	7 Dynamic recommender ensembles
	7.1 Problem statement
	7.2 A performance prediction framework for ensemble recommendation
	7.2.1 Requirements
	7.2.2 Predictor normalisation
	7.2.3 Weight distribution among recommenders

	7.3 Experimental results
	7.3.1 Dynamic recommender ensembles on rating data
	7.3.2 Dynamic recommender ensembles on log data
	7.3.3 Dynamic recommender ensembles on social data
	7.3.4 Discussion

	7.4 Conclusions

	Chapter 8
	8 Neighbour selection and weighting in user-based collaborative filtering
	8.1 Problem statement
	8.2 A performance prediction framework for neighbour scoring
	8.2.1 Unifying neighbour selection and weighting in user-based Recommender Systems
	8.2.2 Neighbour selection and weighting as a performance prediction problem

	8.3 Neighbour quality metrics and performance predictors
	8.3.1 Neighbour quality metrics
	8.3.2 Neighbour performance predictors

	8.4 Experimental results
	8.4.1 Correlation analysis
	8.4.2 Performance analysis
	8.4.3 Discussion

	8.5 Conclusions

